Quantum Computing

András Gilyén

Summer School in Post-Quantum Cryptography, 2nd \& 4th August 2022

4 postulates of quantum mechanics

1: (Pure) states are unit-length vectors of a Hilbert space

We consider the finite-dimensional case. (Complex Euclidean vector space.)

1: (Pure) states are unit-length vectors of a Hilbert space

We consider the finite-dimensional case. (Complex Euclidean vector space.)

- E.g.: a qubit has state space $\mathbb{C}^{2}=\operatorname{Span}\{|0\rangle,|1\rangle\}$

$$
|\psi\rangle=\underbrace{a|0\rangle+b|1\rangle}_{\text {superposition }} \text { such that }|a|^{2}+|b|^{2}=1
$$

1: (Pure) states are unit-length vectors of a Hilbert space

We consider the finite-dimensional case. (Complex Euclidean vector space.)

- E.g.: a qubit has state space $\mathbb{C}^{2}=\operatorname{Span}\{|0\rangle,|1\rangle\}$

$$
|\psi\rangle=\underbrace{a|0\rangle+b|1\rangle}_{\text {superposition }} \text { such that }|a|^{2}+|b|^{2}=1
$$

- Dirac notation: ket vector $|\psi\rangle=\binom{a}{b}=a|0\rangle+b|1\rangle-a, b$ are called amplitudes bra vector $\langle\psi|=|\psi\rangle^{\dagger}=\left(\begin{array}{ll}\bar{a} & \bar{b}\end{array}\right)$

1: (Pure) states are unit-length vectors of a Hilbert space

We consider the finite-dimensional case. (Complex Euclidean vector space.)

- E.g.: a qubit has state space $\mathbb{C}^{2}=\operatorname{Span}\{|0\rangle,|1\rangle\}$

$$
|\psi\rangle=\underbrace{a|0\rangle+b|1\rangle}_{\text {superposition }} \text { such that }|a|^{2}+|b|^{2}=1
$$

- Dirac notation: ket vector $|\psi\rangle=\binom{a}{b}=a|0\rangle+b|1\rangle-a, b$ are called amplitudes

$$
\text { bra vector }\langle\psi|=|\psi\rangle^{\dagger}=\left(\begin{array}{ll}
\bar{a} & \bar{b}
\end{array}\right)
$$

Motivation: inner product notation (let $|\phi\rangle=c|0\rangle+d|1\rangle)$

$$
\langle\psi, \phi\rangle=\langle\psi| \cdot|\phi\rangle=\bar{a} c+\bar{b} d
$$

1: Example qubit - photon polarization

1: Example qubit - photon polarization

Photon

Note: two states are "fully" distinguishable iff they are orthogonal

2: Composite systems are formed by tensor products

$|v\rangle \in V,|w\rangle \in W \Longrightarrow$ Joint state: $|v\rangle \otimes|w\rangle \in V \otimes W$

2: Composite systems are formed by tensor products

$|v\rangle \in V,|w\rangle \in W \Longrightarrow$ Joint state: $|v\rangle \otimes|w\rangle \in V \otimes W$

- E.g.: n qubits have state space $\mathbb{C}^{2^{n}}=\operatorname{Span}\left\{|i\rangle: i \in\{0,1\}^{n}\right\}$ (computational basis)

2: Composite systems are formed by tensor products

$|v\rangle \in V,|w\rangle \in W \Longrightarrow$ Joint state: $|v\rangle \otimes|w\rangle \in V \otimes W$

- E.g.: n qubits have state space $\mathbb{C}^{2^{n}}=\operatorname{Span}\left\{|i\rangle: i \in\{0,1\}^{n}\right\}$ (computational basis)

2 qubits: $|0\rangle \otimes|0\rangle=\binom{1}{0} \otimes\binom{1}{0}=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right) ;|0\rangle \otimes|1\rangle=\binom{1}{0} \otimes\binom{0}{1}=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right) ; \ldots$
Generic two-qubit state $\left.|\psi\rangle=a_{00}|00\rangle+a_{01}|01\rangle+a_{10}|10\rangle+a_{11}|11\rangle\right)=\left(\begin{array}{c}a_{00} \\ a_{01} \\ a_{10} \\ a_{11}\end{array}\right)$

2: Composite systems are formed by tensor products

$|v\rangle \in V,|w\rangle \in W \Longrightarrow$ Joint state: $|v\rangle \otimes|w\rangle \in V \otimes W$

- E.g.: n qubits have state space $\mathbb{C}^{2^{n}}=\operatorname{Span}\left\{|i\rangle: i \in\{0,1\}^{n}\right\}$ (computational basis)

2 qubits: $|0\rangle \otimes|0\rangle=\binom{1}{0} \otimes\binom{1}{0}=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right) ;|0\rangle \otimes|1\rangle=\binom{1}{0} \otimes\binom{0}{1}=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right) ; \ldots$
Generic two-qubit state $\left.|\psi\rangle=a_{00}|00\rangle+a_{01}|01\rangle+a_{10}|10\rangle+a_{11}|11\rangle\right)=\left(\begin{array}{c}a_{00} \\ a_{01} \\ a_{10} \\ a_{11}\end{array}\right)$
$\vee|v\rangle \otimes|w\rangle$ is a product state; non-product sates are called entangled

2: Composite systems are formed by tensor products

$|v\rangle \in V,|w\rangle \in W \Longrightarrow$ Joint state: $|v\rangle \otimes|w\rangle \in V \otimes W$

- E.g.: n qubits have state space $\mathbb{C}^{2^{n}}=\operatorname{Span}\left\{|i\rangle: i \in\{0,1\}^{n}\right\}$ (computational basis)

2 qubits: $|0\rangle \otimes|0\rangle=\binom{1}{0} \otimes\binom{1}{0}=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right) ;|0\rangle \otimes|1\rangle=\binom{1}{0} \otimes\binom{0}{1}=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right) ; \ldots$
Generic two-qubit state $\left.|\psi\rangle=a_{00}|00\rangle+a_{01}|01\rangle+a_{10}|10\rangle+a_{11}|11\rangle\right)=\left(\begin{array}{c}a_{00} \\ a_{01} \\ a_{10} \\ a_{11}\end{array}\right)$
$\vee|v\rangle \otimes|w\rangle$ is a product state; non-product sates are called entangled E.g., Einstein-Podolsky-Rosen (EPR)-pair: $\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$

3: Measurement is described by Born's rule

Measure state $|\psi\rangle=\sum_{i=0}^{N-1} a_{i}|i\rangle$ in orthonormal basis $(|0\rangle,|1\rangle, \ldots,|N-1\rangle) \Longrightarrow$
We get outcome i with probability $\left|a_{i}\right|^{2}$, and the state collapses to $|i\rangle$

3: Measurement is described by Born's rule

Measure state $|\psi\rangle=\sum_{i=0}^{N-1} a_{i}|i\rangle$ in orthonormal basis $(|0\rangle,|1\rangle, \ldots,|N-1\rangle) \Longrightarrow$
We get outcome i with probability $\left|a_{i}\right|^{2}$, and the state collapses to $|i\rangle$

- Extended Born's rule for partial measurememts:

$$
|\psi\rangle=\sum_{i=0}^{N-1}|i\rangle \otimes\left|\phi_{i}\right\rangle \Longrightarrow \operatorname{Pr}(\text { outcome } i)=\left\|\phi_{i}\right\|^{2} \& \text { state "collapses" to } \frac{|i\rangle \otimes\left|\phi_{i}\right\rangle}{\left\|\phi_{i}\right\|}
$$

3: Measurement is described by Born's rule

Measure state $|\psi\rangle=\sum_{i=0}^{N-1} a_{i}|i\rangle$ in orthonormal basis $(|0\rangle,|1\rangle, \ldots,|N-1\rangle) \Longrightarrow$
We get outcome i with probability $\left|a_{i}\right|^{2}$, and the state collapses to $|i\rangle$

- Extended Born's rule for partial measurememts:

$$
|\psi\rangle=\sum_{i=0}^{N-1}|i\rangle \otimes\left|\phi_{i}\right\rangle \Longrightarrow \operatorname{Pr}\left(\text { outcome i) }=\left\|\phi_{i}\right\|^{2} \& \text { state "collapses" to } \frac{|i\rangle \otimes\left|\phi_{i}\right\rangle}{\left\|\phi_{i}\right\|}\right.
$$

- Analogous to conditioning probability distributions

$$
\operatorname{Pr}(\text { outcome } i j)=\operatorname{Pr}(\text { outcome jij) } \cdot \operatorname{Pr}(\text { outcome } i)
$$

3: Measurement is described by Born's rule

Measure state $|\psi\rangle=\sum_{i=0}^{N-1} a_{i}|i\rangle$ in orthonormal basis $(|0\rangle,|1\rangle, \ldots,|N-1\rangle) \Longrightarrow$
We get outcome i with probability $\left|a_{i}\right|^{2}$, and the state collapses to $|i\rangle$

- Extended Born's rule for partial measurememts:

$$
|\psi\rangle=\sum_{i=0}^{N-1}|i\rangle \otimes\left|\phi_{i}\right\rangle \Longrightarrow \operatorname{Pr}\left(\text { outcome i) }=\left\|\phi_{i}\right\|^{2} \& \text { state "collapses" to } \frac{|i\rangle \otimes\left|\phi_{i}\right\rangle}{\left\|\phi_{i}\right\|}\right.
$$

- Analogous to conditioning probability distributions

$$
\operatorname{Pr}(\text { outcome } i j)=\operatorname{Pr}(\text { outcome } j i) \cdot \operatorname{Pr}(\text { outcome } i)
$$

- More general projective measurement:

$$
\Pi_{j} \text { orth. projectors s.t. } I=\sum_{j} \Pi_{j} \Longrightarrow \operatorname{Pr}(\text { outcome } j)=\| \Pi_{j}|\psi\rangle \|^{2} \text { collapse: } \frac{\Pi_{j}|\psi\rangle}{\| \Pi_{j}|\psi\rangle \|}
$$

4: "Time-evolution" is described by unitary operators

Linear map mapping states to states \Longleftrightarrow unitary operator

4: "Time-evolution" is described by unitary operators

Linear map mapping states to states \Longleftrightarrow unitary operator

- Quantum algorithm: unitary matrix U (i.e., $\left.U^{\dagger} U=I=U U^{i}\right)$

4: "Time-evolution" is described by unitary operators

Linear map mapping states to states \Longleftrightarrow unitary operator

- Quantum algorithm: unitary matrix U (i.e., $\left.U^{\dagger} U=I=U U^{i}\right)$

Quantum Circuits and algorithms

Quantum circuits

- Quantum algorithm: unitary matrix U (i.e., $U_{\grave{\prime}} U=I=U U^{\dot{*}}$)

Quantum circuits

- Quantum algorithm: unitary matrix U (i.e., $U^{\grave{\prime}} U=I=U U^{\dot{i}}$)
- (circuit) complexity: number of elementary gates

$$
\begin{gathered}
X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad H=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right) \quad R_{\varphi}=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{2 \pi i \varphi}
\end{array}\right) \\
\text { CNOT }=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
\end{gathered}
$$

(Gates extend by $\otimes /$ to the other qubits.)

- quantum circuit notation for X, H, R_{φ}, CNOT, and SWAP:

Classical circuits to quantum circuits

- Quantum circuits implement unitary operations which are reversible.

Classical circuits to quantum circuits

- Quantum circuits implement unitary operations which are reversible.
- Quantum computers can implement reversible logical operations.

Classical circuits to quantum circuits

- Quantum circuits implement unitary operations which are reversible.
- Quantum computers can implement reversible logical operations.
- Every classical Boolean circuit can be made reversible by using ancilla (qu)bits!

Classical circuits to quantum circuits

- Quantum circuits implement unitary operations which are reversible.
- Quantum computers can implement reversible logical operations.
- Every classical Boolean circuit can be made reversible by using ancilla (qu)bits!

Classical circuits to quantum circuits

- Quantum circuits implement unitary operations which are reversible.
- Quantum computers can implement reversible logical operations.
- Every classical Boolean circuit can be made reversible by using ancilla (qu)bits!
- Classical and gate:

Classical circuits to quantum circuits

- Quantum circuits implement unitary operations which are reversible.
- Quantum computers can implement reversible logical operations.
- Every classical Boolean circuit can be made reversible by using ancilla (qu)bits!
- Classical and gate:

- Reversible quantum version (a.k.a. Toffoli gate):

Classical circuits to quantum circuits

- Quantum circuits implement unitary operations which are reversible.
- Quantum computers can implement reversible logical operations.
- Every classical Boolean circuit can be made reversible by using ancilla (qu)bits!
- Classical and gate:

- Reversible quantum version (a.k.a. Toffoli gate):

- For general logical operation $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$:

The Quantum Fourier Transform

The (quantum) Fourier transform for $k \in \mathbb{Z}_{N}$ is defined as

$$
F_{N}:|k\rangle \mapsto \sum_{j=0}^{N-1} e^{\frac{2 \pi}{N} j \cdot k}|j\rangle,
$$

where $j \cdot k$ is the usual product of two integers in \mathbb{Z}_{N}.

The Quantum Fourier Transform

The (quantum) Fourier transform for $k \in \mathbb{Z}_{N}$ is defined as

$$
F_{N}:|k\rangle \mapsto \sum_{j=0}^{N-1} e^{\frac{2 \pi i j}{N} \cdot k}|j\rangle,
$$

where $j \cdot k$ is the usual product of two integers in \mathbb{Z}_{N}. Let $\omega_{N}:=e^{2 \pi i / N}$, in matrix notation we can write:

$$
F_{N}=\frac{1}{\sqrt{N}}\left(\begin{array}{ccc}
& \vdots & \\
\cdots & \omega_{N}^{j k} & \cdots \\
& \vdots &
\end{array}\right)
$$

The Quantum Fourier Transform

The (quantum) Fourier transform for $k \in \mathbb{Z}_{N}$ is defined as

$$
F_{N}:|k\rangle \mapsto \sum_{j=0}^{N-1} e^{\frac{2 \pi i j}{N} \cdot k}|j\rangle,
$$

where $j \cdot k$ is the usual product of two integers in \mathbb{Z}_{N}.
Let $\omega_{N}:=e^{2 \pi i / N}$, in matrix notation we can write:

$$
F_{N}=\frac{1}{\sqrt{N}}\left(\begin{array}{ccc}
& \vdots & \\
\cdots & \omega_{N}^{j k} & \cdots \\
& \vdots &
\end{array}\right)
$$

Note that for \mathbb{Z}_{2} we have $H=F_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)$.

The Quantum Fourier Transform

F_{N} is a unitary matrix, since each column has norm 1, and any two distinct columns k and k^{\prime} are orthogonal:

$$
\begin{aligned}
\left(F_{N}|k\rangle\right)^{\dagger} \cdot\left(F_{N}\left|k^{\prime}\right\rangle\right) & \left.=\left(\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1}\left(\omega_{N}^{j k}\right)^{*}\langle j|\right) \cdot\left(\frac{1}{\sqrt{N}} \sum_{j^{\prime}=0}^{N-1}\left(\omega_{N}^{j k^{\prime}}\right) j^{\prime}\right\rangle\right) \\
& =\sum_{j=0}^{N-1} \frac{1}{\sqrt{N}}\left(\omega_{N}^{j k}\right)^{*} \frac{1}{\sqrt{N}} \omega_{N}^{j k^{\prime}} \\
& =\frac{1}{N} \sum_{j=0}^{N-1} \omega_{N}^{j\left(k^{\prime}-k\right)} \\
& = \begin{cases}1 & \text { if } k=k^{\prime} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Since F_{N} is unitary we have that $F_{N}^{-1}=F_{N}^{\dagger}$. As F_{N} is also symmetric we further get $F_{N}^{-1}=F_{N}^{+}=F_{N}^{*}$, i.e., F_{N}^{-1} can be computed by simply conjugating each entry of F_{N}.

Shor's factoring algorithm from period finding

For an $1<x<N, x \nmid N$ consider the sequence

$$
1=x^{0} \quad(\bmod N), \quad x^{1} \quad(\bmod N), x^{2} \quad(\bmod N), \ldots
$$

This sequence will cycle after a while: there is a least $0<r \leq N$ such that $x^{r}=1$ $(\bmod N)$. This r is called the period of the sequence (a.k.a. the order of the element x in the group \mathbb{Z}_{N}^{*}).

Assuming N is odd and not a prime power (those cases are easy to factor anyway), it can be shown that with probability $\geq 1 / 2$, the period r is even and $x^{r / 2}+1$ and $x^{r / 2}-1$ are not multiples of N.

Shor's factoring algorithm from period finding

For an $1<x<N, x \nmid N$ consider the sequence

$$
1=x^{0} \quad(\bmod N), \quad x^{1} \quad(\bmod N), x^{2} \quad(\bmod N), \ldots
$$

This sequence will cycle after a while: there is a least $0<r \leq N$ such that $x^{r}=1$ $(\bmod N)$. This r is called the period of the sequence (a.k.a. the order of the element x in the group \mathbb{Z}_{N}^{*}).

Assuming N is odd and not a prime power (those cases are easy to factor anyway), it can be shown that with probability $\geq 1 / 2$, the period r is even and $x^{r / 2}+1$ and $x^{r / 2}-1$ are not multiples of N.

In that case we have:

$$
\begin{aligned}
x^{r} & \equiv 1 \bmod N \\
\left(x^{r / 2}\right)^{2} & \equiv 1 \bmod N \\
\left(x^{r / 2}+1\right)\left(x^{r / 2}-1\right) & \equiv 0 \bmod N \\
\underbrace{\left(x^{r / 2}+1\right)}_{N \nmid}(\underbrace{\left.x^{r / 2}-1\right)} & =\mathrm{kN} \text { for some } k .
\end{aligned}
$$

Quantum Period Finding

Suppose f has period r and for all $x=1, \ldots, r$ the value $f(x)$ is distinct. Let $M:=2^{m}$.

Quantum Period Finding

Suppose f has period r and for all $x=1, \ldots, r$ the value $f(x)$ is distinct. Let $M:=2^{m}$.

$$
\begin{aligned}
& |0\rangle^{\otimes m}|0\rangle^{\otimes n} \xrightarrow{H^{\text {em }}} \sum_{j=0}^{M-1}|j\rangle|0\rangle^{\otimes n} \xrightarrow{O_{4}} \sum_{j=0}^{M-1}|j\rangle|f(j)\rangle \xrightarrow{\text { measure }} \propto \sum_{k=0}^{\left\lfloor\frac{M-1-s}{1}\right\rfloor}|s+k \cdot r\rangle|f(s)\rangle
\end{aligned}
$$

Quantum Period Finding

Suppose f has period r and for all $x=1, \ldots, r$ the value $f(x)$ is distinct. Let $M:=2^{m}$.

$$
\begin{aligned}
& |0\rangle^{\otimes m}|0\rangle^{\otimes n} \xrightarrow{H^{\otimes m}} \sum_{j=0}^{M-1}|j\rangle|0\rangle^{\otimes n} \xrightarrow{O_{4}} \sum_{j=0}^{M-1}|j\rangle|f(j)\rangle \xrightarrow{\text { measure }} \propto \sum_{k=0}^{\left\lfloor\frac{M-1-s}{r}\right\rfloor}|s+k \cdot r\rangle|f(s)\rangle
\end{aligned}
$$

For simplicity let us assume that $r \mid M$, then

$$
\begin{array}{r}
\sum_{k=0}^{\frac{M}{r}-1}|s+k \cdot r\rangle \xrightarrow{F_{M}} \sum_{k=0}^{\frac{M}{r}-1} \sum_{j=0}^{M-1} e^{\frac{2 \pi j}{M} j \cdot(s+k \cdot r)}|j\rangle=\sum_{j=0}^{M-1} e^{\frac{2 \pi}{M} \cdot s}|j\rangle \sum_{(e^{\frac{2 \pi}{M} j \cdot r} \cdot \underbrace{M}_{r=0}-1) /\left(e^{\frac{2 \pi j}{M} ; \cdot r}-1\right)}^{\frac{M}{r-1}} e^{\frac{2 \pi j}{M} j \cdot r k}= \begin{cases}\frac{M}{r} & \text { if } j=c \cdot \frac{M}{r} \\
0 & \text { otherwise }\end{cases}
\end{array}
$$

The Hidden Subgroup Problem

Given a known group G and a function $f: G \rightarrow S$ where S is some finite set.

The Hidden Subgroup Problem

Given a known group G and a function $f: G \rightarrow S$ where S is some finite set. Suppose f has the property that there exists a subgroup $H \leq G$ such that f is constant within each coset, and distinct on different cosets: $f(g)=f\left(g^{\prime}\right)$ iff $g H=g^{\prime} H$.

The Hidden Subgroup Problem

Given a known group G and a function $f: G \rightarrow S$ where S is some finite set. Suppose f has the property that there exists a subgroup $H \leq G$ such that f is constant within each coset, and distinct on different cosets: $f(g)=f\left(g^{\prime}\right)$ iff $g H=g^{\prime} H$. Goal: find H (for example output a set of generators).

- For Abelian groups G, a generalized version of Shor's algorithm works.

The Hidden Subgroup Problem

Given a known group G and a function $f: G \rightarrow S$ where S is some finite set. Suppose f has the property that there exists a subgroup $H \leq G$ such that f is constant within each coset, and distinct on different cosets: $f(g)=f\left(g^{\prime}\right)$ iff $g H=g^{\prime} H$. Goal: find H (for example output a set of generators).

- For Abelian groups G, a generalized version of Shor's algorithm works.
- This breaks discrete logartihm, elliptic curve based crypto, Diffie-Hellman, etc.

The Hidden Subgroup Problem

Given a known group G and a function $f: G \rightarrow S$ where S is some finite set. Suppose f has the property that there exists a subgroup $H \leq G$ such that f is constant within each coset, and distinct on different cosets: $f(g)=f\left(g^{\prime}\right)$ iff $g H=g^{\prime} H$. Goal: find H (for example output a set of generators).

- For Abelian groups G, a generalized version of Shor's algorithm works.
- This breaks discrete logartihm, elliptic curve based crypto, Diffie-Hellman, etc.
- For some types of non-Abelian groups we have efficient quantum algorithms.

The Hidden Subgroup Problem

Given a known group G and a function $f: G \rightarrow S$ where S is some finite set. Suppose f has the property that there exists a subgroup $H \leq G$ such that f is constant within each coset, and distinct on different cosets: $f(g)=f\left(g^{\prime}\right)$ iff $g H=g^{\prime} H$. Goal: find H (for example output a set of generators).

- For Abelian groups G, a generalized version of Shor's algorithm works.
- This breaks discrete logartihm, elliptic curve based crypto, Diffie-Hellman, etc.
- For some types of non-Abelian groups we have efficient quantum algorithms.
- For the dihedral group D_{n} (containing the symmetries of a regular n-gon), Kuperberg's sieve solves the problem in subexponential time (about $O\left(2^{\sqrt{n}}\right)$).

Grover's algorithm and amplitude amplification

Suppose we have a probabilistic algorithm that detects "success"

$$
U|0\rangle^{\otimes n}=|\psi\rangle=\sqrt{p}\left|\psi_{\text {good }}\right\rangle|1\rangle+\sqrt{1-p}\left|\psi_{\text {bad }}\right\rangle|0\rangle .
$$

Grover's algorithm and amplitude amplification

Suppose we have a probabilistic algorithm that detects "success"

$$
U|0\rangle^{\otimes n}=|\psi\rangle=\sqrt{p}\left|\psi_{\text {good }}\right\rangle|1\rangle+\sqrt{1-p}\left|\psi_{\text {bad }}\right\rangle|0\rangle .
$$

The Grover operator G_{u} is defined as follows

$$
G_{u}=\left(2|\psi X \psi|-I_{n}\right) \cdot\left(2 I_{n-1} \otimes|0 X 0|-I_{n}\right) .
$$

Grover's algorithm and amplitude amplification

Suppose we have a probabilistic algorithm that detects "success"

$$
U|0\rangle^{\otimes n}=|\psi\rangle=\sqrt{p}\left|\psi_{\text {good }}\right\rangle|1\rangle+\sqrt{1-p}\left|\psi_{\text {bad }}\right\rangle|0\rangle .
$$

The Grover operator G_{u} is defined as follows

$$
G_{U}=\left(2|\psi X \psi|-I_{n}\right) \cdot\left(2 I_{n-1} \otimes|0 X 0|-I_{n}\right) .
$$

Gu acts as a 2θ-angle rotation in a two-dimensional invariant subspace, where

$$
\theta=\arcsin \left(\|\left(I_{n-1} \otimes|1 X 1|\right)|\psi\rangle \|\right)=\arcsin (\sqrt{p}) .
$$

Grover's algorithm and amplitude amplification

Suppose we have a probabilistic algorithm that detects "success"

$$
U|0\rangle^{\otimes n}=|\psi\rangle=\sqrt{p}\left|\psi_{\text {good }}\right\rangle|1\rangle+\sqrt{1-p}\left|\psi_{\mathrm{bad}}\right\rangle|0\rangle .
$$

The Grover operator G_{u} is defined as follows

$$
G_{u}=\left(2|\psi X \psi|-I_{n}\right) \cdot\left(2 I_{n-1} \otimes|0 X 0|-I_{n}\right) .
$$

Gu acts as a 2θ-angle rotation in a two-dimensional invariant subspace, where

$$
\theta=\arcsin \left(\|\left(I_{n-1} \otimes|1 X 1|\right)|\psi\rangle \|\right)=\arcsin (\sqrt{p}) .
$$

Grover's algorithm and amplitude amplification

Suppose we have a probabilistic algorithm that detects "success"

$$
U|0\rangle^{\otimes n}=|\psi\rangle=\sqrt{p}\left|\psi_{\text {good }}\right\rangle|1\rangle+\sqrt{1-p}\left|\psi_{\mathrm{bad}}\right\rangle|0\rangle .
$$

The Grover operator G_{u} is defined as follows

$$
G_{U}=\left(2|\psi X \psi|-I_{n}\right) \cdot\left(2 I_{n-1} \otimes|0 X 0|-I_{n}\right) .
$$

Gu acts as a 2θ-angle rotation in a two-dimensional invariant subspace, where

$$
\theta=\arcsin \left(\|\left(I_{n-1} \otimes|1 X 1|\right)|\psi\rangle \|\right)=\arcsin (\sqrt{p}) .
$$

Grover's algorithm and amplitude amplification

Suppose we have a probabilistic algorithm that detects "success"

$$
U|0\rangle^{\otimes n}=|\psi\rangle=\sqrt{p}\left|\psi_{\text {good }}\right\rangle|1\rangle+\sqrt{1-p}\left|\psi_{\mathrm{bad}}\right\rangle|0\rangle .
$$

The Grover operator G_{u} is defined as follows

$$
G_{u}=\left(2|\psi X \psi|-I_{n}\right) \cdot\left(2 I_{n-1} \otimes|0 X 0|-I_{n}\right) .
$$

Gu acts as a 2θ-angle rotation in a two-dimensional invariant subspace, where

$$
\theta=\arcsin \left(\|\left(I_{n-1} \otimes|1 X 1|\right)|\psi\rangle \|\right)=\arcsin (\sqrt{p}) .
$$

Grover's algorithm and amplitude amplification

The success probability after k iteration is $\sin ^{2}((2 k+1) \theta)$!

Grover's algorithm and amplitude amplification

The success probability after k iteration is $\sin ^{2}((2 k+1) \theta)$!

- For small p we have $\theta \approx \sqrt{p} \gg p$.

Grover's algorithm and amplitude amplification

The success probability after k iteration is $\sin ^{2}((2 k+1) \theta)$!

- For small p we have $\theta \approx \sqrt{p} \gg p$.
- It is possible to over-rotate.

Grover's algorithm and amplitude amplification

The success probability after k iteration is $\sin ^{2}((2 k+1) \theta)$!

- For small p we have $\theta \approx \sqrt{p} \gg p$.
- It is possible to over-rotate.
- Grover's original problem - find a (unique) marked element m among N choices.

Grover's algorithm and amplitude amplification

The success probability after k iteration is $\sin ^{2}((2 k+1) \theta)$!

- For small p we have $\theta \approx \sqrt{p} \gg p$.
- It is possible to over-rotate.
- Grover's original problem - find a (unique) marked element m among N choices. Prepare a uniform superposition and check:

$$
|0\rangle \xrightarrow{H} \frac{1}{\sqrt{N}} \sum_{j=0}^{N}|j\rangle|0\rangle \xrightarrow{\text { check }} \frac{1}{\sqrt{N}} \sum_{j=0}^{N}|j\rangle\left|\delta_{m j}\right\rangle \Rightarrow\left|\psi_{\text {good }}\right\rangle=|m\rangle \quad\left(p=\frac{1}{N}\right)
$$

Rewinding \& post-quantum security

Classically secure protocol = (classically) hard problem + security reduction
Efficient A wins "security game" \Rightarrow We get efficient A^{\prime} solving hard problem

Rewinding \& post-quantum security

Classically secure protocol = (classically) hard problem + security reduction
Efficient A wins "security game" \Rightarrow We get efficient A^{\prime} solving hard problem

Post-quantum security = quantum-hard problem + (classical) reduction?

Rewinding \& post-quantum security

Classically secure protocol = (classically) hard problem + security reduction

Efficient A wins "security game" \Rightarrow We get efficient A^{\prime} solving hard problem

Post-quantum security = quantum-hard problem + (classical) reduction?

[BCMVV18] protocol: Prover \leftrightarrows Verifier: accept/reject

Rewinding \& post-quantum security

Classically secure protocol = (classically) hard problem + security reduction

Efficient A wins "security game" \Rightarrow We get efficient A^{\prime} solving hard problem

Post-quantum security = quantum-hard problem + (classical) reduction?
[BCMVV18] protocol: Prover \leftrightarrows Verifier: accept/reject

- Efficient classical P cannot make V accept assuming LWE hard

Rewinding \& post-quantum security

Classically secure protocol = (classically) hard problem + security reduction

Efficient A wins "security game" \Rightarrow We get efficient A^{\prime} solving hard problem

Post-quantum security = quantum-hard problem + (classical) reduction?
[BCMVV18] protocol: Prover \leftrightarrows Verifier: accept/reject

- Efficient classical P cannot make V accept assuming LWE hard
- Efficient quantum P can convince V to accept

Rewinding \& post-quantum security

Classically secure protocol = (classically) hard problem + security reduction

Efficient A wins "security game" \Rightarrow We get efficient A^{\prime} solving hard problem

```
Post-quantum security = quantum-hard problem + (classical) reduction?
```

[BCMVV18] protocol: Prover \leftrightarrows Verifier: accept/reject

- Efficient classical P cannot make V accept assuming LWE hard
- Efficient quantum P can convince V to accept

For more details see the "Quantum Rewinding Tutorial" of Alex Lombardi (MIT) and Fermi Ma (UC Berkeley) recorded at the Simons Institute (available on YouTube).
[BCMVV18]: Zvika Brakerski, Paul Christiano, Urmila Mahadev, Umesh V. Vazirani, and Thomas Vidick. A cryptographic test of quantumness and certifiable randomness from a single quantum device. J. ACM (August 2021). Earlier version at FOCS 2018.

Rewinding a'la Mariott-Watrous

You hold a useful quantum state

- If you measure in basis $A \Rightarrow$ you can solve problem A
- If you measure in basis $B \Rightarrow$ you can solve problem B

Rewinding a'la Mariott-Watrous

You hold a useful quantum state

- If you measure in basis $A \Rightarrow$ you can solve problem A
- If you measure in basis $B \Rightarrow$ you can solve problem B

Mariott-Watrous trick

- Suppose you can measure projector Π and any state in the image of Π is good for you.

Rewinding a'la Mariott-Watrous

You hold a useful quantum state

- If you measure in basis $A \Rightarrow$ you can solve problem A
- If you measure in basis $B \Rightarrow$ you can solve problem B

Mariott-Watrous trick

- Suppose you can measure projector Π and any state in the image of Π is good for you.
- Suppose you can solve problem A via a binary measurement $\left(\Pi_{A}, I-\Pi_{A}\right)$.

Trick: alternately repeat the two measurements $\left(\Pi_{A}, I-\Pi_{A}\right)$ and $(\Pi, I-\Pi)$ until you get lucky and get back a state in the image of Π.

Rewinding a'la Mariott-Watrous

You hold a useful quantum state

- If you measure in basis $A \Rightarrow$ you can solve problem A
- If you measure in basis $B \Rightarrow$ you can solve problem B

Mariott-Watrous trick

- Suppose you can measure projector Π and any state in the image of Π is good for you.
- Suppose you can solve problem A via a binary measurement $\left(\Pi_{A}, I-\Pi_{A}\right)$.

Trick: alternately repeat the two measurements $\left(\Pi_{A}, I-\Pi_{A}\right)$ and $(\Pi, I-\Pi)$ until you get lucky and get back a state in the image of Π.

In expectation 4 measurements suffice to get back such a state!

Further reading

- Parts of this presentation come from Ronald de Wolf's Quantum Coputing Lecture Notes - arXiv: 1907.09415.
- See also the "Quantum Rewinding Tutorial" Part 1,2, \& 3 of Alex Lombardi (MIT) and Fermi Ma (UC Berkeley) recorded at the Simons Institute on June 15th.

