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4 postulates of quantum mechanics
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1: (Pure) states are unit-length vectors of a Hilbert space

We consider the finite-dimensional case. (Complex Euclidean vector space.)

I E.g.: a qubit has state space C2 = Span{|0〉, |1〉}

|ψ〉 = a |0〉+ b |1〉︸        ︷︷        ︸
superposition

such that |a |2 + |b |2 = 1

I Dirac notation: ket vector |ψ〉 =

(
a
b

)
= a |0〉+ b |1〉— a, b are called amplitudes

bra vector 〈ψ| = |ψ〉† =
(

a b
)

Motivation: inner product notation (let |φ〉 = c |0〉+ d|1〉)

〈ψ, φ〉 = 〈ψ| · |φ〉 = ac + bd
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1: Example qubit — photon polarization

Note: two states are “fully” distinguishable iff they are orthogonal
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2: Composite systems are formed by tensor products

|v〉 ∈ V , |w〉 ∈ W =⇒ Joint state: |v〉 ⊗ |w〉 ∈ V ⊗W

I E.g.: n qubits have state space C2n
= Span{|i〉 : i ∈ {0, 1}n} (computational basis)

2 qubits: |0〉 ⊗ |0〉 =

(
1
0

)
⊗

(
1
0

)
=


1
0
0
0

; |0〉 ⊗ |1〉 =

(
1
0

)
⊗

(
0
1

)
=


0
1
0
0

; . . .

Generic two-qubit state |ψ〉 = a00|00〉+ a01|01〉+ a10|10〉+ a11|11〉) =


a00

a01

a10

a11


I |v〉 ⊗ |w〉 is a product state; non-product sates are called entangled

E.g., Einstein-Podolsky-Rosen (EPR)-pair: 1
√

2
(|00〉+ |11〉)
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3: Measurement is described by Born’s rule

Measure state |ψ〉 =
∑N−1

i=0 ai |i〉 in orthonormal basis (|0〉, |1〉, . . . , |N − 1〉) =⇒

We get outcome i with probability |ai |
2, and the state collapses to |i〉

I Extended Born’s rule for partial measurememts:

|ψ〉 =
N−1∑
i=0

|i〉 ⊗ |φi〉 =⇒ Pr(outcome i) = ‖φi‖
2 & state “collapses” to

|i〉 ⊗ |φi〉

‖φi‖

I Analogous to conditioning probability distributions

Pr(outcome ij) = Pr(outcome j|i)︸             ︷︷             ︸
determined by the collapsed state

· Pr(outcome i)

I More general projective measurement:

Πj orth. projectors s.t. I =
∑

j

Πj =⇒ Pr(outcome j) =
∥∥∥Πj |ψ〉

∥∥∥2
collapse:

Πj |ψ〉∥∥∥Πj |ψ〉
∥∥∥
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4: “Time-evolution” is described by unitary operators

Linear map mapping states to states⇐⇒ unitary operator

I Quantum algorithm: unitary matrix U (i.e., U†U = I = UU†)
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Quantum Circuits and algorithms
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Quantum circuits
I Quantum algorithm: unitary matrix U (i.e., U†U = I = UU†)

I (circuit) complexity: number of elementary gates

X =

(
0 1
1 0

)
H =

1
√

2

(
1 1
1 −1

)
Rϕ =

(
1 0
0 e2πiϕ

)

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


(Gates extend by ⊗I to the other qubits.)

I quantum circuit notation for X ,H,Rϕ,CNOT , and SWAP:

X H Rϕ • ×

×
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Classical circuits to quantum circuits
I Quantum circuits implement unitary operations which are reversible.

I Quantum computers can implement reversible logical operations.
I Every classical Boolean circuit can be made reversible by using ancilla (qu)bits!

I Classical and gate: a

b
a ∧ b

I Reversible quantum version (a.k.a. Toffoli gate):

|a〉 • |a〉
|b〉 • |b〉

|0〉 |a ∧ b〉

I For general logical operation f : {0, 1}n → {0, 1}m:

|x〉
Of

|x〉

|c〉
∣∣∣c ⊕ f(x)

〉
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The Quantum Fourier Transform

The (quantum) Fourier transform for k ∈ ZN is defined as

FN : |k 〉 7→
N−1∑
j=0

e
2πi
N j·k |j〉,

where j · k is the usual product of two integers in ZN.

Let ωN := e2πi/N, in matrix notation we can write:

FN =
1
√

N


...

· · · ωjk
N · · ·
...

.

Note that for Z2 we have H = F2 = 1
√

2

(
1 1
1 −1

)
.
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where j · k is the usual product of two integers in ZN.
Let ωN := e2πi/N, in matrix notation we can write:

FN =
1
√

N


...

· · · ωjk
N · · ·
...

.

Note that for Z2 we have H = F2 = 1
√

2

(
1 1
1 −1

)
.
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The Quantum Fourier Transform
FN is a unitary matrix, since each column has norm 1, and any two distinct columns k
and k ′ are orthogonal:

(FN |k 〉)† · (FN |k ′〉) =

 1
√

N

N−1∑
j=0

(ωjk
N )∗〈j|

 ·
 1
√

N

N−1∑
j′=0

(ωj′k ′

N )|j′〉


=

N−1∑
j=0

1
√

N
(ωjk

N )∗
1
√

N
ωjk ′

N

=
1
N

N−1∑
j=0

ω
j(k ′−k)
N

=

{
1 if k = k ′

0 otherwise

Since FN is unitary we have that F−1
N = F†N. As FN is also symmetric we further get

F−1
N = F†N = F∗N, i.e., F−1

N can be computed by simply conjugating each entry of FN.
11 / 19



Shor’s factoring algorithm from period finding
For an 1 < x < N, x - N consider the sequence

1 = x0 (mod N), x1 (mod N), x2 (mod N), . . .

This sequence will cycle after a while: there is a least 0 < r ≤ N such that x r = 1
(mod N). This r is called the period of the sequence (a.k.a. the order of the element x
in the group Z∗N).

Assuming N is odd and not a prime power (those cases are easy to factor anyway), it
can be shown that with probability ≥ 1/2, the period r is even and x r/2 + 1 and x r/2 − 1
are not multiples of N.

In that case we have:
x r ≡ 1 mod N ⇐⇒

(x r/2)2 ≡ 1 mod N ⇐⇒

(x r/2 + 1)(x r/2 − 1) ≡ 0 mod N ⇐⇒

(x r/2 + 1)︸     ︷︷     ︸
N-

(x r/2 − 1)︸     ︷︷     ︸
N-

= kN for some k .
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Quantum Period Finding
Suppose f has period r and for all x = 1, . . . , r the value f(x) is distinct. Let M := 2m.

|0〉⊗m / H⊗m

Of
FM

|0〉⊗n /

|0〉⊗m
|0〉⊗n H⊗m

−→

M−1∑
j=0

|j〉|0〉⊗n Of
−→

M−1∑
j=0

|j〉
∣∣∣f(j)

〉 measure
−→ ∝

bM−1−s
r c∑

k=0

|s + k · r〉
∣∣∣f(s)

〉
For simplicity let us assume that r | M, then
M
r −1∑
k=0

|s + k · r〉
FM
−→

M
r −1∑
k=0

M−1∑
j=0

e
2πi
M j·(s+k ·r)|j〉 =

M−1∑
j=0

e
2πi
M j·s |j〉

M
r −1∑
k=0

e
2πi
M j·r ·k

︸      ︷︷      ︸
(e

2πi
M j·r M

r − 1)/(e
2πi
M j·r − 1)

=

{
M
r if j = c · M

r
0 otherwise

13 / 19



Quantum Period Finding
Suppose f has period r and for all x = 1, . . . , r the value f(x) is distinct. Let M := 2m.

|0〉⊗m / H⊗m

Of
FM

|0〉⊗n /

|0〉⊗m
|0〉⊗n H⊗m

−→

M−1∑
j=0

|j〉|0〉⊗n Of
−→

M−1∑
j=0

|j〉
∣∣∣f(j)

〉 measure
−→ ∝

bM−1−s
r c∑

k=0

|s + k · r〉
∣∣∣f(s)

〉

For simplicity let us assume that r | M, then
M
r −1∑
k=0

|s + k · r〉
FM
−→

M
r −1∑
k=0

M−1∑
j=0

e
2πi
M j·(s+k ·r)|j〉 =

M−1∑
j=0

e
2πi
M j·s |j〉

M
r −1∑
k=0

e
2πi
M j·r ·k

︸      ︷︷      ︸
(e

2πi
M j·r M

r − 1)/(e
2πi
M j·r − 1)

=

{
M
r if j = c · M

r
0 otherwise

13 / 19



Quantum Period Finding
Suppose f has period r and for all x = 1, . . . , r the value f(x) is distinct. Let M := 2m.

|0〉⊗m / H⊗m

Of
FM

|0〉⊗n /

|0〉⊗m
|0〉⊗n H⊗m

−→

M−1∑
j=0

|j〉|0〉⊗n Of
−→

M−1∑
j=0

|j〉
∣∣∣f(j)

〉 measure
−→ ∝

bM−1−s
r c∑

k=0

|s + k · r〉
∣∣∣f(s)

〉
For simplicity let us assume that r | M, then
M
r −1∑
k=0

|s + k · r〉
FM
−→

M
r −1∑
k=0

M−1∑
j=0

e
2πi
M j·(s+k ·r)|j〉 =

M−1∑
j=0

e
2πi
M j·s |j〉

M
r −1∑
k=0

e
2πi
M j·r ·k

︸      ︷︷      ︸
(e

2πi
M j·r M

r − 1)/(e
2πi
M j·r − 1)

=

{
M
r if j = c · M

r
0 otherwise

13 / 19



The Hidden Subgroup Problem

Given a known group G and a function f : G → S where S is some finite set.

Suppose f has the property that there exists a subgroup H ≤ G such that f is constant
within each coset, and distinct on different cosets: f(g) = f(g′) iff gH = g′H.
Goal: find H (for example output a set of generators).

I For Abelian groups G, a generalized version of Shor’s algorithm works.
I This breaks discrete logartihm, elliptic curve based crypto, Diffie-Hellman, etc.
I For some types of non-Abelian groups we have efficient quantum algorithms.
I For the dihedral group Dn (containing the symmetries of a regular n-gon),

Kuperberg’s sieve solves the problem in subexponential time (about O
(
2
√

n
)
).
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Grover’s algorithm and amplitude amplification
Suppose we have a probabilistic algorithm that detects “success”

U|0〉⊗n = |ψ〉 =
√

p
∣∣∣ψgood

〉
|1〉+

√
1 − p|ψbad〉|0〉.

The Grover operator GU is defined as follows

GU = (2|ψ〉〈ψ| − In) · (2In−1 ⊗ |0〉〈0| − In).

GU acts as a 2θ-angle rotation in a two-dimensional invariant subspace, where

θ = arcsin
(∥∥∥(In−1 ⊗ |1〉〈1|)|ψ〉

∥∥∥) = arcsin
(√

p
)
.

|ψ〉

|ψbad〉|0〉

∣∣∣ψgood

〉
|1〉

θ

√
p |ψ〉

|ψ′〉

|ψbad〉|0〉

∣∣∣ψgood

〉
|1〉

θ
−θ
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Grover’s algorithm and amplitude amplification

|ψ〉

|ψ′〉

|ψbad〉|0〉

∣∣∣ψgood

〉
|1〉

θ
−θ

∣∣∣ψ(1)
〉

2θ
√

p

The success probability after k iteration is sin2((2k + 1)θ)!

I For small p we have θ ≈
√

p � p.
I It is possible to over-rotate.
I Grover’s original problem – find a (unique) marked element m among N choices.

Prepare a uniform superposition and check:

|0〉
H
→

1
√

N

N∑
j=0

|j〉|0〉
check
→

1
√

N

N∑
j=0

|j〉
∣∣∣δmj

〉
⇒

∣∣∣ψgood

〉
= |m〉 (p =

1
N

)
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Grover’s algorithm and amplitude amplification
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Rewinding & post-quantum security

Classically secure protocol = (classically) hard problem + security reduction

Efficient A wins “security game”⇒We get efficient A ′ solving hard problem

Post-quantum security = quantum-hard problem + (classical) reduction?

[BCMVV18] protocol: Prover� Verifier: accept/reject
I Efficient classical P cannot make V accept assuming LWE hard
I Efficient quantum P can convince V to accept

For more details see the “Quantum Rewinding Tutorial” of Alex Lombardi (MIT) and
Fermi Ma (UC Berkeley) recorded at the Simons Institute (available on YouTube).

[BCMVV18]: Zvika Brakerski, Paul Christiano, Urmila Mahadev, Umesh V. Vazirani,
and Thomas Vidick. A cryptographic test of quantumness and certifiable randomness
from a single quantum device. J. ACM (August 2021). Earlier version at FOCS 2018.

17 / 19

https://dl.acm.org/doi/10.1145/3441309
https://dl.acm.org/doi/10.1145/3441309


Rewinding & post-quantum security

Classically secure protocol = (classically) hard problem + security reduction

Efficient A wins “security game”⇒We get efficient A ′ solving hard problem

Post-quantum security = quantum-hard problem + (classical) reduction?

[BCMVV18] protocol: Prover� Verifier: accept/reject
I Efficient classical P cannot make V accept assuming LWE hard
I Efficient quantum P can convince V to accept

For more details see the “Quantum Rewinding Tutorial” of Alex Lombardi (MIT) and
Fermi Ma (UC Berkeley) recorded at the Simons Institute (available on YouTube).

[BCMVV18]: Zvika Brakerski, Paul Christiano, Urmila Mahadev, Umesh V. Vazirani,
and Thomas Vidick. A cryptographic test of quantumness and certifiable randomness
from a single quantum device. J. ACM (August 2021). Earlier version at FOCS 2018.

17 / 19

https://dl.acm.org/doi/10.1145/3441309
https://dl.acm.org/doi/10.1145/3441309


Rewinding & post-quantum security

Classically secure protocol = (classically) hard problem + security reduction

Efficient A wins “security game”⇒We get efficient A ′ solving hard problem

Post-quantum security = quantum-hard problem + (classical) reduction?

[BCMVV18] protocol: Prover� Verifier: accept/reject

I Efficient classical P cannot make V accept assuming LWE hard
I Efficient quantum P can convince V to accept

For more details see the “Quantum Rewinding Tutorial” of Alex Lombardi (MIT) and
Fermi Ma (UC Berkeley) recorded at the Simons Institute (available on YouTube).

[BCMVV18]: Zvika Brakerski, Paul Christiano, Urmila Mahadev, Umesh V. Vazirani,
and Thomas Vidick. A cryptographic test of quantumness and certifiable randomness
from a single quantum device. J. ACM (August 2021). Earlier version at FOCS 2018.

17 / 19

https://dl.acm.org/doi/10.1145/3441309
https://dl.acm.org/doi/10.1145/3441309


Rewinding & post-quantum security

Classically secure protocol = (classically) hard problem + security reduction

Efficient A wins “security game”⇒We get efficient A ′ solving hard problem

Post-quantum security = quantum-hard problem + (classical) reduction?

[BCMVV18] protocol: Prover� Verifier: accept/reject
I Efficient classical P cannot make V accept assuming LWE hard

I Efficient quantum P can convince V to accept
For more details see the “Quantum Rewinding Tutorial” of Alex Lombardi (MIT) and
Fermi Ma (UC Berkeley) recorded at the Simons Institute (available on YouTube).

[BCMVV18]: Zvika Brakerski, Paul Christiano, Urmila Mahadev, Umesh V. Vazirani,
and Thomas Vidick. A cryptographic test of quantumness and certifiable randomness
from a single quantum device. J. ACM (August 2021). Earlier version at FOCS 2018.
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Rewinding a’la Mariott-Watrous

You hold a useful quantum state

I If you measure in basis A ⇒ you can solve problem A
I If you measure in basis B ⇒ you can solve problem B

Mariott-Watrous trick

I Suppose you can measure projector Π and any state in the image of Π is good
for you.

I Suppose you can solve problem A via a binary measurement (ΠA , I − ΠA ).
Trick: alternately repeat the two measurements (ΠA , I − ΠA ) and (Π, I − Π) until you
get lucky and get back a state in the image of Π.

In expectation 4 measurements suffice to get back such a state!
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Further reading
I Parts of this presentation come from Ronald de Wolf’s Quantum Coputing

Lecture Notes – arXiv: 1907.09415.
I See also the “Quantum Rewinding Tutorial” Part 1,2, & 3 of Alex Lombardi (MIT)

and Fermi Ma (UC Berkeley) recorded at the Simons Institute on June 15th.
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