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1: (Pure) states are unit-length vectors of a Hilbert space

We consider the finite-dimensional case. (Complex Euclidean vector space.)
» E.g.: a qubit has state space C? = Span({|0), [1)}
Iy = al0) + b|1) such that |a®* + [bJ? = 1
N——————

superposition

» Dirac notation: ket vector |y) = ( ta)

bra vector (y| = |y)' = ( a b )

) = al0) + b|1) — a, b are called amplitudes

Motivation: inner product notation (let |¢) = c¢|0) + d|1))
(W, ¢) = (¥l - I¢) = ac + bd



Photon




Photon

Polarization angle

Note: two states are “fully” distinguishable iff they are orthogonal
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2: Composite systems are formed by tensor products

vy € V,|lw) e W = Joint state: |[v)®|lw) e Vo W

» E.g.: n qubits have state space C2" = Span{|i): i € {0, 1}"} (computational basis)
0

oo =(gle( 7)o |
0

aoo
ao1
aio
ayy

2 qubits: |o>®|o>—( ; )®( 8 )_

O OO =

Generic two-qubit state [if) = ago|00) + ap1|01) + aso[10) + as1|11)) =

> |v) ® |w) is a product state; non-product sates are called entangled
E.g., Einstein-Podolsky-Rosen (EPR)-pair: %(|oo> +11))
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3: Measurement is described by Born’s rule

Measure state |¢) = z,”;g ajliy in orthonormal basis (|0),[1),...,IN- 1)) =

We get outcome i with probability |a;%, and the state collapses to |}

» Extended Born’s rule for partial measurememts:
N-1

) = Z i) ® |¢p;y = Pr(outcome i) = ||<z>,‘||2 & state “collapses” to |I>|§_||Ti>
i=0 i
» Analogous to conditioning probability distributions
Pr(outcome ij) = Pr(outcome jli) - Pr(outcome i)
e £ 00 ol
» More general projective measurement:
Mily)

M; orth. projectors s.t. | = Z M, = Pr(outcome j) = ||I'I,-|gb>||2 collapse: W
j j
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Quantum Circuits and algorithms
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Quantum circuits

» Quantum algorithm: unitary matrix U (i.e., U'U = | = UU")

> (circuit) complexity: number of elementary gates

0 1
x=(1

|

1 (1
H=—
AR
10
0 1
CNOT =| ¢
00

(Gates extend by ®/ to the other qubits.)
> quantum circuit notation for X, H, R,, CNOT, and SWAP:

—X}= —H- —

R
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Classical circuits to quantum circuits

> Quantum circuits implement unitary operations which are reversible.
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Classical circuits to quantum circuits

» Quantum circuits implement unitary operations which are reversible.
» Quantum computers can implement reversible logical operations.
» Every classical Boolean circuit can be made reversible by using ancilla (qu)bits!

» Classical and gate: a
D aAb
b

» Reversible quantum version (a.k.a. Toffoli gate):

|a) —e— &)
b) —— |b)

0y —b— laAb)




Classical circuits to quantum circuits

\4

\{

\{

Quantum circuits implement unitary operations which are reversible.
Quantum computers can implement reversible logical operations.
Every classical Boolean circuit can be made reversible by using ancilla (qu)bits!

Classical and gate:

a
EWN)
b

Reversible quantum version (a.k.a. Toffoli gate):

la) —e— la)
lb) —e— |b)
0) —&— laADb)
For general logical operation f: {0,1}" — {0, 1}™:
X>— = X%
Oy
oy 14— [cef(x))




The Quantum Fourier Transform

The (quantum) Fourier transform for k € Zy is defined as
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The Quantum Fourier Transform

The (quantum) Fourier transform for k € Zy is defined as
N-1
27 ;
F: k) = )7 e ™4y,
=0

where j - k is the usual product of two integers in Zy.
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The Quantum Fourier Transform

Fy is a unitary matrix, since each column has norm 1, and any two distinct columns k
and k’ are orthogonal:

1 N-1 ‘ . 1 N-1 .
(Fulk)) - (Flk’Y) = | —= > (@)l |- | == D (el
N—1
1 a1
_ - a)jk *_dk
e N( ) NN
N-1
1 j(k'~K)
N]:0
1 ifk=K

:{ 0 otherwise

Since Fy is unitary we have that F' = F,{, As Fy is also symmetric we further get
Fy! = F), = F;, i.e., Fy' can be computed by simply conjugating each entry of Fy.



Shor’s factoring algorithm from period finding
Foran1 < x < N, x 1 N consider the sequence

1=x" (mod N), x' (mod N), x* (mod N),...

This sequence will cycle after a while: there is aleast 0 < r < N such that x" = 1

(mod N). This r is called the period of the sequence (a.k.a. the order of the element x
in the group Zy).

Assuming N is odd and not a prime power (those cases are easy to factor anyway), it
can be shown that with probability > 1/2, the period r is even and x"/2 + 1 and x"/? — 1
are not multiples of N.



Shor’s factoring algorithm from period finding
Foran1 < x < N, x 1 N consider the sequence
1=x" (mod N), x' (mod N), x* (mod N),...

This sequence will cycle after a while: there is aleast 0 < r < N such that x" = 1
(mod N). This r is called the period of the sequence (a.k.a. the order of the element x
in the group Zy).

Assuming N is odd and not a prime power (those cases are easy to factor anyway), it
can be shown that with probability > 1/2, the period r is even and x"/2 + 1 and x"/? — 1
are not multiples of N.

In that case we have:

X" =1 modN

(x?2 = 1 modN

(X2 +1)(x"2=1) = 0 mod N
(x2 +1)(x"2-1) = kN for some k.

| S A
Ny Ny



Quantum Period Finding

Suppose f has period r and for all x = 1,..., r the value f(x) is distinct. Let M := 2™.
0" —— Hen
f
0% ————
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Quantum Period Finding

Suppose f has period rand forall x =1,...,

r the value f(x) is distinct. Let M := 2™.

|0>®m Hem

10)*" ———

O

om0y 5 Z N0y = Z O

J= j=0

| M=tss |

measure Z |s + k . r>|f(s)>

k=0
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Quantum Period Finding

Suppose f has period r and for all x = 1,..., r the value f(x) is distinct. Let M := 2™.

0" —— Hen
0" +——H " HA

| M=t=s |
0°m0y" < Z N0y = Z DFE)Y " Y s + k- nff(s))
j=0 j=0 k=0

For simplicity let us assume that r | M, then
ol el 2 L sl P M oifj=c-Y

Sl (s+ker) iy — s Zirk _ ) ¥ -7
Z|S+k r)—> Z;)Z;A = Z;AGM 2 KZ_Oe { 0 otherwise

IS IS = 2

(Wi —1)/(e Wi = 1)
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The Hidden Subgroup Problem

Given a known group G and a function f : G — S where S is some finite set.
Suppose f has the property that there exists a subgroup H < G such that f is constant
within each coset, and distinct on different cosets: f(g) = f(¢g’) iff gH = g’'H.

Goal: find H (for example output a set of generators).

» For Abelian groups G, a generalized version of Shor’s algorithm works.
» This breaks discrete logartihm, elliptic curve based crypto, Diffie-Hellman, etc.
» For some types of non-Abelian groups we have efficient quantum algorithms.

» For the dihedral group D, (containing the symmetries of a regular n-gon),
Kuperberg’s sieve solves the problem in subexponential time (about 0(2 ‘5)).
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Grover’s algorithm and amplitude amplification
Suppose we have a probabilistic algorithm that detects “success”

UI0F" = ) = VB|Wzooa)1) + V1 = Plaa)lO).
The Grover operator Gy is defined as follows

Gu = (WX = In) - (21 @ |0XOI = n).

Gy acts as a 26-angle rotation in a two-dimensional invariant subspace, where
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Grover’s algorithm and amplitude amplification
|wgood>|1> |lﬁ(1)>

N )

[Yrbaa)|0)
V)

The success probability after k iteration is sin®((2k + 1)6)!
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Grover’s algorithm and amplitude amplification
|'/’g00d>|1> |¢(1)>

b2 )|0)
")
The success probability after k iteration is sin®((2k + 1)6)!
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Grover’s algorithm and amplitude amplification
|‘/’g00d>|1> |¢(1)>

o W)
{ﬂ,‘ Weac)lO)

")
The success probability after k iteration is sin®((2k + 1)6)!

> For small p we have 6 = +/p > p.
> It is possible to over-rotate.

» Grover’s original problem — find a (unique) marked element m among N choices.
Prepare a uniform superposition and check:

N
05 — Z hio) %" 1,\, 3 0om) = ws) <1 (6= )
=
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Rewinding & post-quantum security

Classically secure protocol = (classically) hard problem + security reduction

Efficient A wins “security game” = We get efficient A" solving hard problem
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Rewinding & post-quantum security

Classically secure protocol = (classically) hard problem + security reduction

Efficient A wins “security game” = We get efficient A" solving hard problem

Post-quantum security = quantum-hard problem + (classical) reduction?

[BCMVV18] protocol: Prover < Verifier: accept/reject
» Efficient classical P cannot make V accept assuming LWE hard
» Efficient quantum P can convince V to accept

For more details see the “Quantum Rewinding Tutorial” of Alex Lombardi (MIT) and
Fermi Ma (UC Berkeley) recorded at the Simons Institute (available on YouTube).

[BCMVV18]: Zvika Brakerski, Paul Christiano, Urmila Mahadev, Umesh V. Vazirani,
and Thomas Vidick. A cryptographic test of quantumness and certifiable randomness
from a single quantum device. J. ACM (August 2021). Earlier version at FOCS 2018.
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Rewinding a’la Mariott-Watrous

You hold a useful quantum state

» If you measure in basis A = you can solve problem A
» If you measure in basis B = you can solve problem B

Mariott-Watrous trick

> Suppose you can measure projector 1 and any state in the image of I1is good
for you.

> Suppose you can solve problem A via a binary measurement (M4, [ —M,).

Trick: alternately repeat the two measurements (M4, [ —M4) and (1, / — 1) until you
get lucky and get back a state in the image of I1.

In expectation 4 measurements suffice to get back such a state!
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Further reading

» Parts of this presentation come from Ronald de Wolf’s Quantum Coputing
Lecture Notes — arXiv: 1907.09415.

> See also the “Quantum Rewinding Tutorial” Part 1,2, & 3 of Alex Lombardi (MIT)
and Fermi Ma (UC Berkeley) recorded at the Simons Institute on June 15th.


https://arxiv.org/abs/1907.09415
https://www.youtube.com/watch?v=bfyAB-tlWgM
https://www.youtube.com/watch?v=rr8G5wxGehY
https://www.youtube.com/watch?v=hRXPjuaAQUg

