Thomas Debris-Alazard

The Decoding

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

Code-based Cryptography

Thomas Debris-Alazard

Inria GRACE & LIX CNRS, Ecole Polytechnique Palaiseau. France

August 2, 2022

Hard

Easy

Hard

Thomas Debris-Alazard

Basic on Code

The Decoding Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Rando

Prange's

Algorithr

Public-key Encryption Schemes

The Team

- Maxime Bombar (PhD at Inria): maxime.bombar@inria.fr
- Kévin Carrier (Assistant Professor at Cergy-Paris): kevin.carrier@ensea.fr
- Thomas Debris-Alazard (Researcher at Inria): thomas.debris@inria.fr

Thomas Debris-Alazard

Basic on Code
The Decoding

Problem
Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

Prange's

Algorithm
Public-key

Encryptio

The Content

3 lecture notes (long, for further reading): http://tdalazard.io/

- 1. An Intractable Problem Related to Codes, Decoding
- 2. Random Codes
- 3. Information Set Decoding Algorithms
 - → Tuesday and Friday' presentations are an overview!

2 exercise sheets

- 1. starting exercises to get familiar with codes & crypto,
- 2. two cryptanalysis (if you are already familiar with codes).

Thomas Debris-Alazard

Basic on Code

The Decoding Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Randon

Prange's Algorithm

Public-key

Public-key Encryption Schemes

Our Lectures

Today

Codes

basic definitions

Decoding Problem

- Worst-Case
- An easy case
- Average case

Friday

Random codes

Average-case hardness Prange's algo

Public-key Encryptions

McEliece

Alekhnovich

Don't hesitate to interrupt!

Thomas Debris-Alazard

Basic on Code

The Decoding

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Rando

Codes

Prange's Algorithm

Public-key Encryption

Code-based Cryptography?

Thomas Debris-Alazard

Basic on Codes

The Decoding

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Rando

Prange's

Algorithm

Public-key Encryption Schemes

An Old History

Shannon (1948/1949) introduced the following problem,

 \rightarrow Matrix A and vectors s, e are binary ($\in \mathbb{F}_2$)

Aim

Recover S

Thomas Debris-Alazard

Basic on Codes

The Decoding

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision

A quick recap

About Randon

Prange's

Public-key Encryption

There are trapdoors(I)!

McEliece (1978):

 $A \leftarrow Trapdoor()$: public-key

- With the trapdoor, easy to recover message if e "short",
- Without, hard

Thomas Debris-Alazard

Basic on Codes

The Decoding

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Randon

Prange's

Public-key Encryption

There are trapdoors(II)!

Alekhnovich (2003):

• To encrypt b = 0, send

e with few 1

Thomas Debris-Alazard

Basic on Code

The Decoding

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Rando

Prange's

Algorithm

Encryptio

You said code?

 \blacksquare \subseteq \in \mathbb{F}_2^{κ}

is known as a code!

To understand what is a code will be useful to

- 1. build trapdoors
- 2. understand the hardness of the problem

Thomas Debris-Alazard

Basic on Code

The Decoding

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision

A quick recap

. . . .

About Randor

Prange's

Public-key

Encryption Schemes

Codes are used in telecommunications

Thomas Debris-Alazard

Basic on Code

The Decoding Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

Codes

Algorithm

Public-key

Scheme

Codes: used in telecommunications!

How to transmit k bits over a noisy channel?

Thomas Debris-Alazard

Basic on Code

The Decoding Problem

Worst-cas

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick reca

About Rando

Prange's

Public-key Encryption Schemes

Codes: used in telecommunications!

How to transmit k bits over a noisy channel?

- **1.** Fix \mathbb{C} subspace $\subseteq \mathbb{F}_2^n$ of dimension k
- 2. Map $(m_1, ..., m_k) \longrightarrow c = (c_1, ..., c_n) \in \mathcal{C}$ (adding n k bits redundancy)
- **3.** Send *c* across the noisy channel

 \longrightarrow from c \oplus e: how to recover e and then c? (Decoding Problem)

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Randon

Prange's

Public-key Encryption

Hamming distance

Real life scenario, c + e with $e = (e_1, \ldots, e_n)$ s.t:

$$\forall i, \quad \mathbb{P}(e_i = 1) = p \text{ and } \mathbb{P}(e_i = 0) = 1 - p$$

 \longrightarrow Each bit of c is flipped with probability p

Given a received corrupted word y

$$\mathbb{P}\left(\text{c was sent} \mid \text{y is received}\right) = p^{d_{\mathsf{H}}(\mathsf{c},\mathsf{y})} (1-p)^{n-d_{\mathsf{H}}(\mathsf{c},\mathsf{y})}$$
where $d_{\mathsf{H}}(\mathsf{c},\mathsf{y}) \stackrel{\mathsf{def}}{=} \sharp \{i : c_i \neq y_i\}$ (Hamming distance)

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Randor

Prange's

Algorithm

Encryptio

Hamming distance

Real life scenario, c + e with $e = (e_1, \ldots, e_n)$ s.t:

$$\forall i$$
, $\mathbb{P}(e_i = 1) = p$ and $\mathbb{P}(e_i = 0) = 1 - p$

 \longrightarrow Each bit of c is flipped with probability p

Given a received corrupted word y

$$\mathbb{P}$$
 (c was sent | y is received) = $p^{d_{\mathbf{H}}(c,y)}(1-p)^{n-d_{\mathbf{H}}(c,y)}$
where $d_{\mathbf{H}}(c,y) \stackrel{\text{def}}{=} \sharp \{i : c_i \neq y_i\}$ (Hamming distance)

Any decoding candidate $c \in \mathcal{C}$ is even more likely as it is close to the received message y for the Hamming distance.

Thomas Debris-Alazard

Basic on Codes

The Decoding Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Random

Prange's

Algorithm

Public-key Encryption Schemes

1 Basic on Codes

2 The Decoding Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

- A quick recap
- 4 About Random Codes
- 6 Prange's Algorithm
- **6** Public-key Encryption Schemes

Thomas Debris-Alazard

Basic on Codes

The Decoding Problem

Worst-case

An easy case:

Average-case

Search-to-Decision Reduction

A quick recap

About Rand

Prange's

Algorithn

Public-key Encryption Schemes

Basic Definitions

 \mathbb{F}_q^n denotes the finite field with q elements

Linear Code

A linear code \mathcal{C} of length n and dimension k ([n, k]-code): subspace of \mathbb{F}_a^n of dimension k

n length ; k dimension

Thomas Debris-Alazard

Basic on Codes

The Decoding Problem

Worst-cas

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Randon

Prange's

Algorithm

Public-key Encryptio Schemes

Example of Codes

First examples of codes:

- 1. $\{(f(x_1), \dots, f(x_n)) : f \in \mathbb{F}_q[X] \text{ and } \deg(f) < k\}$ where the x_i 's are distinct elements of \mathbb{F}_q ,
- 2. $\{(u, u + v) : u \in U \text{ and } v \in V\}$ where U (resp. V) is an $[n, k_U]_q$ -code (resp. $[n, k_V]_q$ -code).
 - ightarrow What are the lengths and dimensions? (exercise)

Thomas Debris-Alazard

Basic on Codes

The Decoding

Worst-case

An easy case:

Average-case

Search-to-Decision Reduction

A quick recap

How to represent a code(I)?

 \mathbb{C} be an [n, k]-code

Basis representation: g_1, \ldots, g_k basis of \mathcal{C}

 $\longrightarrow \mathcal{C} = \{ \mathsf{mG} : \mathsf{m} \in \mathbb{F}_q^k \}$ where the rows of $\mathsf{G} \in \mathbb{F}_q^{k \times n}$ are the g_i 's

Reciprocally, any $G \in \mathbb{F}_q^{k \times n}$ of rank k defines the [n, k]-code

$$\mathcal{C} \stackrel{\mathsf{def}}{=} \left\{ \mathsf{mG} \; : \; \mathsf{m} \in \mathbb{F}_q^k \right\}$$

G: generator (matrix)

Thomas Debris-Alazard

Basic on Codes

The Decoding Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Randon

Prange's

Public-key Encryption

How to represent a code(II)?

Dual code

Given C, its dual C^* is the [n, n-k]-code

$$\mathfrak{C}^* \stackrel{\mathsf{def}}{=} \left\{ \mathbf{c}^* \in \mathbb{F}_q^n \ : \ \forall \mathbf{c} \in \mathfrak{C}, \ \langle \mathbf{c}, \mathbf{c}^* \rangle = \sum_{i=1}^n c_i c_i^* = \mathbf{0} \in \mathbb{F}_q \right\}.$$

Basic on Codes

The Decoding

Worst-case

An easy case:

Average-case

Search-to-Decision Reduction

A quick recap

How to represent a code(II)?

Dual code

Given \mathcal{C} , its dual \mathcal{C}^* is the [n, n-k]-code

$$\mathfrak{C}^* \stackrel{\mathsf{def}}{=} \left\{ \mathbf{c}^* \in \mathbb{F}_q^n \ : \ \forall \mathbf{c} \in \mathfrak{C}, \ \langle \mathbf{c}, \mathbf{c}^* \rangle = \sum_{i=1}^n c_i c_i^* = \mathbf{0} \in \mathbb{F}_q \right\}.$$

Parity-check representation: h_1, \ldots, h_{n-k} basis of \mathbb{C}^*

$$\longrightarrow \mathcal{C} = \{c : Hc^T = 0\}$$
 where the rows of $H \in \mathbb{F}_q^{(n-k) \times n}$ are the h_i 's

Reciprocally, any $H \in \mathbb{F}_q^{(n-k)\times n}$ of rank n-k defines the [n,k]-code

$$\mathcal{C} \stackrel{\mathsf{def}}{=} \left\{ c : \mathsf{Hc}^\mathsf{T} = 0 \right\}$$

H: parity-check (matrix)

An easy case:

Reed-Solomon cod

Average-case

Search-to-Decision Reduction

A quick recap

About Rando

Prange's

Public-key Encryption

A remark

- $G \in \mathbb{F}_q^{k \times n}$ generator matrix of $C (C = \{mG : m\})$
 - \longrightarrow SG still generator matrix of ${\mathfrak C}$ when

$$S \in \mathbb{F}_q^{k \times k}$$
 non-singular

- $H \in \mathbb{F}_q^{(n-k) \times n}$ parity-check matrix of \mathfrak{C} ($\mathfrak{C} = \{c : Hc^T = 0\}$)
 - \longrightarrow SH still parity-check matrix of ${\mathfrak C}$ when

$$S \in \mathbb{F}_q^{(n-k)\times (n-k)}$$
 non-singular

Thomas Debris-Alazard

Basic on Codes

The Decoding

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Random

Prange's

Public-key Encryption

From one representation to the other?

$$\mathsf{G} \in \mathbb{F}_q^{k \times n}$$
 generator $\overset{\mathsf{easy}}{\longleftrightarrow}$ to $\overset{\mathsf{compute}?}{\longleftrightarrow}$ $\mathsf{H} \in \mathbb{F}_q^{(n-k) \times n}$ parity-check

Thomas Debris-Alazard

Basic on Codes

The Decoding Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Rando

Prange's

Public-key Encryption

From one representation to the other?

$$G \in \mathbb{F}_a^{k \times n}$$
 generator easy to compute? H

 $\mathsf{H} \in \mathbb{F}_q^{(n-k) imes n}$ parity-check

YES!

- **1.** Show that if $H \in \mathbb{F}_q^{(n-k)\times n}$ has rank n-k and $GH^T = 0$, then H parity-check (exercise),
- 2. Perform a Gaussian elimination (see the board).

Thomas Debris-Alazard

Basic on Codes

The Decoding

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Randon

Prange's

Public-key Encryption

Generator or parity-check?

Would you rather choose generator or parity-check representation?

Thomas Debris-Alazard

Basic on Codes

The Decoding Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Randor

Codes

Algorithn

Public-key Encryption Schemes

Generator or parity-check?

Would you rather choose generator or parity-check representation?

Sorry for the team generator matrix :(

Usually, the parity-check representation is more "natural"...

Thomas Debris-Alazard

Basic on Codes

The Decoding

Worst-case

An easy case:

Average-case

Search-to-Decis Reduction

A quick recap

About Randon

Prange's

Public-key Encryption

Hamming code

Let $\mathfrak{C}_{\mathsf{Ham}}$ be the [7,4]-code of generator matrix:

$$\mathsf{G} \stackrel{\mathsf{def}}{=} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$\mathsf{H} \stackrel{\mathsf{def}}{=} \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$

has rank 3 and verifies $GH^T = 0$.

Let c+e where $\left\{ \begin{array}{l} c\in \mathcal{C}_{\mathsf{Ham}} \\ |e|=1 \end{array} \right.$: how to easily recover e?

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Randor

Prange's

Algorithm

Public-key Encryptio Schemes

Modulo the code

Given c + e: recover e.

 \longrightarrow Make modulo \mathcal{C} to extract the information about e

Coset space: $\mathbb{F}_q^n/\mathbb{C}$

$$\sharp \, \mathbb{F}_q^n/\mathbb{C} = q^{n-k} \quad \text{ and } \quad \mathbb{F}_q^n/\mathbb{C} = \left\{\mathsf{x}_i + \mathbb{C} \, : \, 1 \leq i \leq q^{n-k} \right\}$$

A natural set of representatives via a parity-check H: syndromes

$$x_i + \mathcal{C} \in \mathbb{F}_q^n/\mathcal{C} \longmapsto \mathsf{H} x_i^\mathsf{T} \in \mathbb{F}_q^{n-k}$$
 (called a syndrome)

is an isomorphism

Thomas Debris-Alazard

Basic on Codes

The Decoding Problem

Worst-cas

An easy case:

Average-case

Search-to-Decision Reduction

A quick recap

.. . . .

About Rando

Prange's

Algorithn

Public-key Encryption Schemes

Syndrome or noisy codewords?

 \mathbb{C} be an [n, k]-code of parity-check matrix \mathbb{H}

Noisy codeword	Syndrome
c + e	He ^T

- From c + e: $H(c + e)^T = Hc^T + He^T = He^T$
- From He^T : compute with linear algebra y s.t $Hy^T = He^T \iff H(y e)^T = 0 \iff y e \in \mathcal{C} \iff y = c + e$

Average-case

Search-to-Decision Reduction

A quick recap

About Random

Prange's Algorithm

Public-key Encryption

Minimum distance

Hamming weight

Given $x \in \mathbb{F}_q^n$, its Hamming weight:

$$|\mathsf{x}| \stackrel{\mathsf{def}}{=} \sharp \{i \ : \ x_i \neq 0\}$$

Minimum distance

The minimum distance of C is

$$d_{\min}(\mathcal{C}) \stackrel{\text{def}}{=} \min \{ |c| : c \in \mathcal{C}, c \neq 0 \}.$$

 $d_{\min}(\mathcal{C})$ important quantity:

"geometry" of ${\mathfrak C}$; "efficiency" of ${\mathfrak C}$; "security" of ${\mathfrak C}$

Thomas Debris-Alazard

Basic on Code

The Decoding Problem

Worst-case An easy case:

Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Random

Prange's

Algorithn

Public-key Encryption 1 Basic on Codes

2 The Decoding Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

- 3 A quick recap
- 4 About Random Codes
- **5** Prange's Algorithm
- 6 Public-key Encryption Schemes

Thomas Debris-Alazard

Basic on Code

Problem
Worst-case

Norst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Rando

Prange's

Algorithm
Public-key

The Decoding Problem

Two formulations:

Problem (Noisy Codeword Decoding)

Given $G \in \mathbb{F}_q^{k \times n}$ of rank k, $t \in [0, n]$, $y \in \mathbb{F}_q^n$ where y = c + e with c = mG for some $m \in \mathbb{F}_q^k$ and |e| = t, find e.

Problem (Syndrome Decoding)

Given $H \in \mathbb{F}_q^{(n-k)\times n}$ of rank n-k, $t \in [0, n]$, $s \in \mathbb{F}_q^{n-k}$ where $He^T = s^T$ with |e| = t, find e.

→ They are equivalent!

n length; k dimension; t decoding distance

Thomas Debris-Alazard

Basic on Code

The Decoding

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Rando

Prange's

Public-key Encryption Schemes

Equivalent representations

Let, \mathcal{A} be s.t $\mathcal{A}(\mathsf{G},\mathsf{mG}+\mathsf{e})\to\mathsf{e}$

Given (H, He^T) : our aim, recover e using A

- 1. Compute with linear algebra G (rank k) s.t $GH^T = 0$
- **2.** Compute (again) with linear algebra y s.t $Hy^T = He^T$.
- 3. Notice that $H(y e)^T = 0 \iff y e = mG$ for some m
- **4.** Feed (G, y) to A, it recovers e.

Exercise: show that the reciprocal holds

In what follows, we only keep the parity-check representation!

Thomas Debris-Alazard

Basic on Code

The Decoding Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Random
Codes

Prange's

Public-key Encryption

NP-completeness

Problem (Worst-case decisional decoding problem)

- Input: $H \in \mathbb{F}_q^{(n-k)\times n}$, $s \in \mathbb{F}_q^{n-k}$ where $n, k \in \mathbb{N}$ with $k \le n$ and an integer $t \le n$.
- Decision: it exists $e \in \mathbb{F}_q^n$ of Hamming weight t such $He^T = s^T$?

This problem is NP-complete...

Is it useful? Be careful of the input set...

Thomas Debris-Alazard

Basic on Codes

The Decoding

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decis Reduction

A quick recap

About Randon

Prange's

Algorithm

Public-key Encryption Schemes

Drawback of the NP-completeness

The above NP-completeness shows that (if $P \neq NP$)

We cannot easily solve the decoding problem for all codes and all decoding distances...

Not a safety guarantee for cryptographic applications...

Thomas Debris-Alazard

Basic on Code
The Decoding

Problem
Worst-case

An easy case:

Reed-Solomon codes

Average-case Search-to-Decision Reduction

A quick recap

About Random

Prange's

Public-key

1 Basic on Codes

2 The Decoding Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

- 3 A quick recap
- 4 About Random Codes
- **5** Prange's Algorithm
- **6** Public-key Encryption Schemes

Thomas Debris-Alazard

Basic on Code

The Decoding Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Random

Prange's

Public-key Encryption There are codes and associated distance for which we know how to decode!

Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Random

Prange's

Public-key Encryption

Generalized Reed-Solomon

GRS codes

 $z \in (\mathbb{F}_q^*)^n$ and $x \in \mathbb{F}_q^n$ s.t $x_i \neq x_j$ (in particular $n \leq q$) and $k \leq n$. The code $GRS_k(x, z)$ is defined as

$$\mathsf{GRS}_k(\mathsf{x},\mathsf{z}) \stackrel{\mathsf{def}}{=} \{ (z_1 f(x_1), \dots, z_n f(x_n)) \ : \ f \in \mathbb{F}_q[X] \ \mathsf{and} \ \mathsf{deg}(f) < k \}$$

→ These codes are used in QR-codes!

Exercise: $GRS_k(x, z)$ has generator matrix

$$G \stackrel{\text{def}}{=} \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ x_1^2 & x_2^2 & \cdots & x_n^2 \\ \vdots & \vdots & \vdots & \vdots \\ x_1^k & x_2^k & \cdots & x_n^k \end{pmatrix} \begin{pmatrix} z_1 & & & 0 \\ & z_2 & & \\ & & \ddots & \\ 0 & & & z_n \end{pmatrix}$$

Basic on Code

The Decoding Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

41 . 5 . 1

About Random Codes

Prange's Algorithm

Public-key Encryption Schemes

Berlekamp-Welsh algorithm

Decoding algorithm

Given,
$$GRS_k(x, z)$$
 and $c + e$ s.t
$$\begin{cases} c \in GRS_k(x, z) \\ |e| \le \lfloor \frac{n-k}{2} \rfloor \end{cases}$$

Then, easy to recover (c, e).

Proof.

On board!

Thomas Debris-Alazard

Basic on Code
The Decoding

Problem

Worst-case
An easy case:

Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Random

Prange's

Algorithm

Public-key Encryption Schemes 1 Basic on Codes

2 The Decoding Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

3 A quick recap

4 About Random Codes

6 Prange's Algorithm

6 Public-key Encryption Schemes

Thomas Debris-Alazard

Basic on Code

The Decoding

Worst-case

An easy case:

Average-case

Search-to-Decision Reduction

A quick recap

.

About Rando Codes

Prange's Algorithm

Public-ke

The average decoding problem

With respect to τ , the solution will be unique or not...

An easy case: Reed-Solomon cod

Average-case

Search-to-Decision Reduction

A quick recap

.. . . .

Codes

Prange's Algorithm

Public-key Encryption Schemes

Average hardness?

Let,
$$\varepsilon = \mathbb{P}_{H,x} \left(\mathcal{A}(H, s = xH^T) = e \text{ s.t. } |e| = t \text{ and } eH^T = s \right)$$

Then, using the law of total probability:

$$\varepsilon = \frac{1}{q^{k (n-k)} (q-1)^t \binom{n}{t}} \sum_{\substack{\mathsf{H} \in \mathbb{F}_q^{(n-k) \times n} \\ |\mathsf{x}| = t}} \mathbb{P}(\mathcal{A}(\mathsf{H},\mathsf{s} = \mathsf{x}\mathsf{H}^\mathsf{T}) = \mathsf{e}$$

s.t
$$|e| = t$$
 and $eH^T = s$)

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision

A quick reca

About Rando

Codes

Algorithm

Public-key Encryption Schemes

Average hardness?

Let,
$$\varepsilon = \mathbb{P}_{H,x} \left(\mathcal{A}(H, s = xH^T) = e \text{ s.t. } |e| = t \text{ and } eH^T = s \right)$$

Then, using the law of total probability:

$$\varepsilon = \frac{1}{q^{k (n-k)} (q-1)^t \binom{n}{t}} \sum_{\substack{\mathsf{H} \in \mathbb{F}_q^{(n-k) \times n} \\ |\mathsf{x}| = t}} \mathbb{P}(\mathcal{A}(\mathsf{H},\mathsf{s} = \mathsf{x}\mathsf{H}^\mathsf{T}) = \mathsf{e}$$

s.t
$$|e| = t$$
 and $eH^T = s$)

All known algorithms have a complexity T/ε (T running time)

$$\frac{T}{\varepsilon} = 2^{\alpha(q,R,\tau)} \, {\scriptstyle n(1+o(1))}$$

for some $\alpha(q, R, \tau) \geq 0$

Thomas Debris-Alazard

Basic on Code

The Decoding

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Randon

Codes

Algorithm

Public-key Encryption Schemes

Its hardness

Figure: Hardness of DP(n, q, R, τ) as function of τ .

Thomas Debris-Alazard

Basic on Code

The Decoding

Worst-case

An easy case: Reed-Solomon code

Average-case

Search-to-Decision Reduction

A quick recap

About Rando

Prange's

Algorithn

Public-key Encryption Schemes

Its hardness

Figure: Hardness of DP(n, q, R, τ) as function of τ .

- McEliece encryption: $\tau = \Theta\left(\frac{1}{\log n}\right)$,
- Other encryption schemes: $\tau = \Theta\left(\frac{1}{\sqrt{n}}\right)$,
- Authentication protocol: $\tau = C$ constant quite small,
- Signature Wave: $\tau = C$ large constant, $C \approx 0.95$.

Thomas Debris-Alazard

Basic on Code

The Decoding Problem

An easy case:

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Random Codes

Prange's Algorithm

Public-key Encryption Schemes

And the generator representation?

 $\mathsf{DP}'(n,q,R, au)$. Let $k \stackrel{\mathsf{def}}{=} \lfloor Rn \rfloor$ and $t \stackrel{\mathsf{def}}{=} \lfloor au n \rfloor$

- Input : $(G, y \stackrel{\text{def}}{=} sG + x)$ where G, s and x are uniformly distributed over $\mathbb{F}_q^{k \times n}$, \mathbb{F}_q^k and words of Hamming weight t in \mathbb{F}_q^n .
- Output : an error $e \in \mathbb{F}_q^n$ of Hamming weight t such that y e = mG for some $m \in \mathbb{F}_q^k$.

Exercise

For any algorithm \mathcal{A} solving DP' with probability ε and time T: describe \mathcal{B} which solves DP in the same time with probability $\geq \varepsilon - O\left(q^{-\min(k,n-k)}\right)$ (and the reciprocal)

→ Same average hardness with syndromes or noisy codewords formalism!

Thomas Debris-Alazard

Basic on Code

Problem

Worst-case

An easy case: Reed-Solomon co

Average-case

Search-to-Decision Reduction

A quick recap

About Random

Algorithr

Public-key Encryption 1 Basic on Codes

2 The Decoding Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

3 A quick recap

4 About Random Codes

6 Prange's Algorithm

6 Public-key Encryption Schemes

Thomas Debris-Alazard

Basic on Code

The Decoding Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Randor

Codes

Algorithn

Public-key Encryption Schemes

Average Decisional Decoding Problem

DDP (n, q, R, τ) , $k \stackrel{\text{def}}{=} \lfloor Rn \rfloor$ and $t \stackrel{\text{def}}{=} \lfloor \tau n \rfloor$.

- Distributions:
 - \mathcal{D}_0 : (H,s) be uniformly distributed over $\mathbb{F}_q^{(n-k)\times n} \times \mathbb{F}_q^{n-k}$.
 - $\mathcal{D}_1: (\mathsf{H}, \mathsf{xH}^\mathsf{T})$ where H (resp. x) being uniformly distributed over $\mathbb{F}_q^{(n-k) \times n}$ (resp. words of Hamming weight t).
- Input: (H,s) distributed according to \mathcal{D}_b where $b \in \{0,1\}$ is uniform,
- Decision: $b' \in \{0, 1\}$.

Is this problem strictly easier than its search version?

→ No! They are equivalent (Goldreich-Levin hardcore predicate)

Thomas Debris-Alazard

Basic on Codes

The Decoding Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Random

Dunnels

Algorithn

Public-key Encryption Schemes 1 Basic on Codes

2 The Decoding Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

- 3 A quick recap
- 4 About Random Codes
- **6** Prange's Algorithm
- **6** Public-key Encryption Schemes

Thomas Debris-Alazard

Basic on Codes

The Decoding

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision

A quick recap

About Randor

Prange's

Algorithm Public-ke

Public-key Encryption Schemes

An old problem: decoding

Shannon (1948/1949) introduced the decoding problem,

There are cryptosystem whose security relies on this problem: code-based crypto (McEliece 78; Alekhnovich 03; etc)

Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Random

Prange's

Public-key Encryption

Two representations of codes

 \mathbb{C} be an [n, k]-code

n length ; k dimension

 $\mathcal{C} \stackrel{\mathsf{def}}{=} \left\{ \mathsf{mG} \ : \ \mathsf{m} \in \mathbb{F}_q^k \right\}$

 $\mathsf{G} \in \mathbb{F}_q^{k \times n}$ rank k: generator (matrix)

$$\mathcal{C} \stackrel{\mathsf{def}}{=} \left\{ c \; : \; \mathsf{Hc}^\mathsf{T} = 0 \right\}$$

 $H \in \mathbb{F}_a^{(n-k)\times n}$ rank n-k: parity-check (matrix)

Thomas Debris-Alazard

Basic on Code

The Decoding Problem

Worst-case

An easy case: Reed-Solomon code

Average-case

Search-to-Decision Reduction

A quick recap

About Random

Prange's

Algorithm

Public-key Encryptio

Average Decoding Problem

Thomas Debris-Alazard

Basic on Code

The Decoding Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Random Codes

Algorithn

Public-key Encryption 1 Basic on Codes

2 The Decoding Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

- A quick recap
- 4 About Random Codes
- **6** Prange's Algorithm
- **6** Public-key Encryption Schemes

Problem

An easy case:

Average-case

Search-to-Decision Reduction

A quick recap

About Random Codes

Drango's

Algorithm

Public-ke

Schemes Schemes

A motivation

Average Decoding Problem (DP)

- Sample: $\mathsf{H} \leftarrow \mathsf{Unif}\left(\mathbb{F}_q^{(n-k) \times n}\right)$, $\mathsf{x} \leftarrow \mathsf{Unif}\left(\left\{\mathsf{z} \in \mathbb{F}_q^n \ : \ |\mathsf{z}| = t\right\}\right)$,
- Given: (H, Hx^T),
- Find $e \in \mathbb{F}_q^n$ s.t $\begin{cases} He^T = Hx^T \\ |e| = t \end{cases}$

A trivial algorithm:

pick
$$e \in \{z \in \mathbb{F}_q^n : |z| = t\}$$
 and test if $He^T = Hx^T$

Thomas Debris-Alazard

Basic on Code

The Decoding Problem

Norst-case

An easy case:

Average-case

Search-to-Decision

A quick recar

About Random Codes

Prange's

Algorithm

Public-key Encryption Schemes

A motivation

Average Decoding Problem (DP)

- Sample: $\mathsf{H} \leftarrow \mathsf{Unif}\left(\mathbb{F}_q^{(n-k) \times n}\right)$, $\mathsf{x} \leftarrow \mathsf{Unif}\left(\left\{\mathsf{z} \in \mathbb{F}_q^n \ : \ |\mathsf{z}| = t\right\}\right)$,
- Given: (H, Hx^T),
- Find $e \in \mathbb{F}_q^n$ s.t $\begin{cases} He^T = Hx^T \\ |e| = t \end{cases}$

A trivial algorithm:

pick
$$\mathbf{e} \in \left\{ \mathbf{z} \in \mathbb{F}_q^n \ : \ |\mathbf{z}| = t \right\}$$
 and test if $\mathbf{H}\mathbf{e}^\mathsf{T} = \mathbf{H}\mathbf{x}^\mathsf{T}$

- If one solution: probability of success $\frac{1}{\sharp \left\{ \mathbf{z} \in \mathbb{F}_q^n : |\mathbf{z}| = t \right\}}$
- If N solutions: probability of success $\approx \frac{N}{\sharp \{z \in \mathbb{F}_q^n : |z| = t\}}$

What is the value of N?

Thomas Debris-Alazard

Basic on Code

The Decoding Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Random

Codes
Prange's

Public-key

Public-key Encryption Schemes

The value of *N*?

To compute *N*: use the theory of random codes!

Random Code

$$\mathcal{C} = \left\{ c \in \mathbb{F}_q^n : Hc^{\mathsf{T}} = 0 \right\} : H \leftarrow \mathsf{Unif}\left(\mathbb{F}_q^{(n-k) \times n}\right)$$

defines a random code

Thomas Debris-Alazard

Basic on Code

The Decoding

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Random

Codes

Algorithn

Public-key Encryption Schemes

Random codes: two models

And generator matrices?

Random Code

$$\bullet \ \, \mathcal{C} = \left\{\mathsf{mG}_{u} \ : \ \, \mathsf{m} \in \mathbb{F}_{q}^{k}\right\} \ \, \mathsf{where} \, \, \mathsf{G}_{u} \leftarrow \mathsf{Unif}\left(\mathbb{F}_{q}^{k \times n}\right)$$

0

•
$$\mathcal{C} = \left\{ c \in \mathbb{F}_q^n : H_u c^\mathsf{T} = 0 \right\}$$
 where $H_u \leftarrow \mathsf{Unif}\left(\mathbb{F}_q^{(n-k) \times n}\right)$

Are the models equivalent? Do they define a random [n, k]-code?

...

Worst-case

An easy case: Reed-Solomon cod

Average-case

Search-to-Decision Reduction

A quick recap

About Random Codes

Algorithn

Public-key Encryption Schemes

At first sight

Random Code

•
$$\mathbb{C} = \{ \mathsf{mG}_u : \mathsf{m} \in \mathbb{F}_q^k \}$$
 where $\mathsf{G}_u \leftarrow \mathsf{Unif}\left(\mathbb{F}_q^{k \times n}\right)$
 $\rightarrow \dim \mathbb{C} \leq k$ as $\mathsf{rank}(\mathsf{G}_u) \leq k$

•
$$\mathbb{C} = \{ c \in \mathbb{F}_q^n : H_u c^\mathsf{T} = 0 \}$$
 where $H_u \leftarrow \mathsf{Unif}\left(\mathbb{F}_q^{(n-k)\times n}\right)$
 $\to \dim \mathbb{C} > k$ as $\mathsf{rank}(H_u) < n - k$

Both models do not seem to be equivalent... (Spoil: they are!)

Thomas Debris-Alazard

Basic on Code

The Decoding

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Random

Prange's

7 11 501111111

Public-key Encryption Schemes

An important tool: statistical distance

Statistical distance

X and Y be random variables

$$\Delta(X, \frac{Y}{Y}) \stackrel{\mathsf{def}}{=} \frac{1}{2} \sum_{a \in \mathcal{E}} |\mathbb{P}(X = a) - \mathbb{P}(\frac{Y}{Y} = a)|.$$

A crucial poperty: data processing inequality

$$\Delta(f(X), f(Y)) \leq \Delta(X, Y)$$

Consequence: $\forall A$ algorithm

$$|\mathbb{P}_{X}(\mathcal{A}(X) = \text{"success"}) - \mathbb{P}_{Y}(\mathcal{A}(Y) = \text{"success"})| \leq \Delta(X, Y).$$

The Decoding Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Random Codes

Algorith

7 11 501111111

Encryptio

Same models

G_u or H_u -models \iff draw uniformly an [n, k]-code:

$$G_k \in \mathbb{F}_q^{k \times n} (H_{n-k} \in \mathbb{F}_q^{(n-k) \times n})$$
 be uniform of rank k (resp. $n-k$):

$$\Delta\left(\mathsf{G}_{u},\mathsf{G}_{k}\right)=\textit{O}\left(q^{-\left(n-k\right)}\right)\quad\left(\textit{resp. }\Delta\left(\mathsf{H}_{u},\mathsf{H}_{n-k}\right)=\textit{O}\left(q^{-k}\right)\right)$$

Computation are the same in G_u and H_u -models:

Let $\mathcal E$ be a set of codes (defined as an event). We have,

$$|\mathbb{P}_{\mathsf{G}_u}(\mathcal{E}) - \mathbb{P}_{\mathsf{H}_u}(\mathcal{E})| = O\left(q^{-\min(k,n-k)}
ight).$$

Thomas Debris-Alazard

Basic on Code

The Decoding Problem

Worst-cas

An easy case: Reed-Solomon cod

Average-case

Search-to-Decision Reduction

A quick recap

About Random Codes

Prange's Algorithm

Algorithm

Public-ke Encryption

DP: generator or parity-check?

$$\mathsf{DP}'(n,q,R,\tau)$$
. Let $k \stackrel{\mathsf{def}}{=} |Rn|$ and $t \stackrel{\mathsf{def}}{=} |\tau n|$

- Input : $(G_u, y \stackrel{\text{def}}{=} sG_u + x)$ where G_u, s and x are uniformly distributed over $\mathbb{F}_q^{k \times n}$, \mathbb{F}_q^k and words of Hamming weight t.
- Output : an error $e \in \mathbb{F}_q^n$ of Hamming weight t such that $y e = mG_u$ for some $m \in \mathbb{F}_q^k$.

Exercise

For any algorithm \mathcal{A} solving DP' with probability ε and time T: describe \mathcal{B} which solves DP in the same time with probability $\geq \varepsilon - O\left(q^{-\min(k,n-k)}\right)$ (and the reciprocal)

VVorst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Random

Codes

Algorithm

Public-ke Encryptio

The proof

 (H, Hx^T) be an instance of DP

The algorithm \mathcal{B} :

- **1.** Compute with linear algebra G (rank k) s.t $GH^T = 0$.
- **2.** Compute with linear algebra y such that $Hy^T = Hx^T$
- **3.** Pick $m \in \mathbb{F}_q^k$ uniformly, y = y + mG
- **4.** Feed (G, y) to A and output its output

Probability of success of \mathcal{B}

$$\begin{split} \mathbb{P}_{\mathsf{H}_{u}}(\mathcal{B}(\mathsf{H}_{u},\mathsf{H}_{u}\mathsf{x}^{\mathsf{T}}) &= \text{``succ''}) \\ &\geq \mathbb{P}_{\mathsf{H}_{n-k}}\left(\mathcal{B}\left(\mathsf{H}_{n-k},\mathsf{H}_{n-k}\mathsf{x}^{\mathsf{T}}\right) = \text{``succ''}\right) - \Delta\left(\mathsf{H}_{u},\mathsf{H}_{n-k}\right) \\ &= \mathbb{P}_{\mathsf{G}_{k}}\left(\mathcal{A}\left(\mathsf{G}_{k},\mathsf{m}\mathsf{G}_{k} + \mathsf{x}\right) = \text{``succ''}\right) - \Delta\left(\mathsf{H}_{u},\mathsf{H}_{n-k}\right) \\ &\geq \mathbb{P}_{\mathsf{G}_{u}}\left(\mathcal{A}\left(\mathsf{G}_{u},\mathsf{m}\mathsf{G}_{u} + \mathsf{x}\right) = \text{``succ''}\right) - \Delta\left(\mathsf{G}_{u},\mathsf{G}_{k}\right) - \Delta\left(\mathsf{H}_{u},\mathsf{H}_{n-k}\right) \end{split}$$

Thomas Debris-Alazard

The Decoding

Worst-case

An easy case: Reed-Solomon codes

Average-case

Reduction

A quick recap

About Random

Codes

A first computation with random codes

s and $y \neq 0$ (fixed), $H_u \leftarrow \text{Unif}\left(\mathbb{F}_q^{(n-k)\times n}\right)$, then:

$$\mathbb{P}_{\mathsf{H}_{u}}(\mathsf{H}_{u}\mathsf{y}^{\mathsf{T}}=\mathsf{s})=\frac{1}{q^{n-k}}.$$

Proof.

On board!

Average-case

Search-to-Decision Reduction

A quick recap

About Random

Prange's

Algorithm

Public-key

What do we expect?

Given (H, s) we are ready to compute:

$$N(\mathsf{H}_u,t)=\sharp \big\{ \mathsf{e} \in \mathbb{F}_q^n \ : \ |\mathsf{e}|=t \ \mathsf{and} \ \mathsf{H}_u\mathsf{e}^\mathsf{T}=\mathsf{s} \big\}.$$

Proposition

We have

$$\mathbb{E}_{\mathsf{H}_u}(\mathsf{N}(\mathsf{H}_u,t)) = rac{\sharp \left\{ \mathsf{e} \in \mathbb{F}_q^n : |\mathsf{e}| = t
ight\}}{q^{n-k}}$$

Proof.

On board!

 $\mathbb{E}_{H_u}(N(H_u,t))$ independent of s

s = 0: average number of codewords of weight t.

Thomas Debris-Alazard

Basic on Code

The Decoding

Worst-case

An easy case:

Average-case

Search-to-Decision Reduction

A quick recap

About Random Codes

Prange's

Algorithm

Public-key Encryption

Schem

Asymptotic behaviour

$$\sharp\left\{\mathsf{e}\in\mathbb{F}_q^n\ :\ |\mathsf{e}|=t
ight\}=inom{n}{t}(q-1)^t$$

$$\binom{n}{t}(q-1)^t = O\left(\frac{1}{\sqrt{n}}\right) q^{n \cdot h\left(\frac{t}{n}\right)}$$
$$h(x) \stackrel{\mathsf{def}}{=} -x \log_q\left(\frac{x}{q-1}\right) - (1-x) \log_q(1-x).$$

Figure: $\lim_{n\to+\infty}\frac{1}{n}\log_q \mathbb{E}_{\mathsf{H}_u}\left(N(\mathsf{H}_u,t)\right)$ s.t $q=3,\ k/n=1/4,$ fct of $\tau=t/n.$

Thomas Debris-Alazard

Basic on Code

The Decoding

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Random

Codes

Algorithm

0 . .

Encryptio

Hardness of DP?

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Random Codes

Prange's

Public-ke

Encryptio Schemes

Be more accurate: order 1

For now, only $\mathbb{E}_{\mathsf{H}_u}\left(N(\mathsf{H}_u,t)\right)$ is known

where
$$N(H_u, t) = \sharp \{ e \in \mathbb{F}_q^n : |e| = t \text{ and } H_u e^T = s \}.$$

Be more precise?

Proposition (First Moment Technique)

For any a > 0,

$$\mathbb{P}_{\mathsf{H}_u}(\mathsf{N}(\mathsf{H}_u,t)>{\color{red}a})\leq \frac{1}{{\color{blue}a}}\,\frac{\binom{n}{t}(q-1)^t}{q^{n-k}}.$$

Proof.

Markov:
$$\mathbb{P}_{\mathsf{H}_u}\left(N(\mathsf{H}_u,t)>a\right)\leq \frac{\mathbb{E}_{\mathsf{H}_u}\left(N(\mathsf{H}_u,t)\right)}{a}$$

Thomas Debris-Alazard

Basic on Code

The Decoding

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Random Codes

_

Algorithm

Public-key Encryption

Order 2?

We can be even more precise: Bienaymé-Tchebychev! (second moment technique)

Thomas Debris-Alazard

Basic on Code

The Decoding

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Random

Codes

Algorithm

Public-key Encryption

Expected minimum distance

$$\mathbb{E}_{\mathsf{H}_u}\left(\sharp\left\{\mathsf{c}\;:\;\mathsf{H}_u\mathsf{c}^\mathsf{T}=\mathsf{0}\;\mathsf{and}\;|\mathsf{c}|=t\right\}\right)=rac{\binom{n}{t}(q-1)^t}{q^{n-k}}$$

Expected minimum distance of \mathcal{C} defined by H_u ?

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Random

Codes

Algorithm

Public-key

Expected minimum distance

$$\mathbb{E}_{\mathsf{H}_u}\left(\sharp\left\{\mathsf{c}\;:\;\mathsf{H}_u\mathsf{c}^\mathsf{T}=\mathsf{0}\;\mathsf{and}\;|\mathsf{c}|=t\right\}\right)=rac{\binom{n}{t}(q-1)^t}{q^{n-k}}$$

Expected minimum distance of \mathcal{C} defined by H_u ?

Gilbert-Varshamov distance

Smallest
$$t$$
 such that $\binom{n}{t}(q-1)^t = q^{n-k}$

$$d_{\min}(\mathcal{C}) = t_{\mathsf{GV}} = Cn$$
 for some constant $C > 0$.

Thomas Debris-Alazard

Basic on Code

The Decoding

Worst-case

An easy case:

Average-case

Search-to-Decisi Reduction

A quick recap

A quick recup

About Random Codes

Prange's

Algorithm

Encryptio Schemes

Balls and minimum distance (worst case)

 ${\mathfrak C}$ be a fixed code of minimum distance $d_{\min}({\mathfrak C})$

$$\forall \mathsf{c}, \mathsf{c}' \in \mathfrak{C}, \, \mathsf{c} \neq \mathsf{c}' \, \colon \, \mathcal{B}_{\mathsf{H}}\left(\mathsf{c}, \frac{\mathit{d}_{\mathsf{min}}(\mathfrak{C}) - 1}{2}\right) \bigcap \mathcal{B}_{\mathsf{H}}\left(\mathsf{c}', \frac{\mathit{d}_{\mathsf{min}}(\mathfrak{C}) - 1}{2}\right) = \emptyset$$

Proof.

On board!

Thomas Debris-Alazard

Basic on Code:

The Decoding Problem

Worst-case

An easy case:

Average-case

Search-to-Decision Reduction

A quick recap

About Random Codes

Prange's

Algorithn

Public-key Encryption Schemes

Balls and minimum distance (average case)

For a random code:

$$d_{\mathsf{min}}(\mathfrak{C}) = t_{\mathsf{GV}}$$

C be a random code

$$\forall c, c' \in \mathcal{C}, c \neq c' : \mathcal{B}_{H}(c, t_{GV}) \cap \mathcal{B}_{H}(c', t_{GV}) \approx \emptyset$$

Not $\frac{t_{GV}}{2}$!

Thomas Debris-Alazard

Basic on Code

The Decoding Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Randon

Prange's Algorithm

Public-key Encryption

- 1 Basic on Codes
- 2 The Decoding Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

- 3 A quick recap
- **4** About Random Codes
- **6** Prange's Algorithm
- **6** Public-key Encryption Schemes

Thomas Debris-Alazard

Basic on Code

The Decoding Problem

Worst-cas

An easy case: Reed-Solomon codes

Average-case

Search-to-Decisio

A quick recap

About Randor

Prange's Algorithm

Public-key Encryption Schemes

Security?

Aim of any code-based cryptosystem: security relies on the hardness of the decoding problem (DP)

How to trust DP hardness?

→ By studying algorithms solving DP!

An old history (since 60 years)

Best algorithms: refinement of Prange's algorithm (1962) Information Set Decoding (ISD) algorithms

Thomas Debris-Alazard

Basic on Code

The Decoding Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Random

Prange's Algorithm

Public-key Encryption Schemes

Prange's algorithm

Our aim: describing Prange's algorithm

Two points of view:

- noisy codewords,
- syndromes and parity-check matrices.

Thomas Debris-Alazard

Basic on Code

The Decoding Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Rando

Prange's Algorithm

Public-key Encryption Schemes

Prange's algorithm

Our aim: describing Prange's algorithm

Two points of view:

- noisy codewords,
- syndromes and parity-check matrices.

Thomas Debris-Alazard

Basic on Code

The Decoding

Worst-case

An easy case:

Average-case

Search-to-Decision Reduction

A quick reca

About Randor Codes

Prange's Algorithm

Public-key Encryption

Noisy codewords

- Given: ${\mathfrak C}$ an [n,k]-code and ${\mathsf c}+{\mathsf e}$ where $\left\{ egin{array}{l} {\mathsf c}\in{\mathfrak C} \\ |{\mathsf e}|=t \end{array} \right.$
- Recover: e

First remark of Prange: Information Set!

Information Set

 $\mathcal{I} \subseteq \{1, \dots, n\}$ of size k, information set of the [n, k]- \mathcal{C} if:

$$\forall \mathsf{x} \in \mathbb{F}_q^k : \exists (\mathsf{unique}) \ \mathsf{c} \in \mathcal{C} : \mathsf{c}_{\mathcal{I}} = \mathsf{x} \quad (\mathsf{where} \ \mathsf{c}_{\mathcal{I}} = (c_i)_{i \in \mathcal{I}})$$

Every codewords: uniquely determined by $k=\dim(\mathcal{C})$ coordinates given by \mathcal{I}

Worst-case

An easy case: Reed-Solomon coo

Average-case

Search-to-Decision Reduction

A quick recap

.

Prange's

Algorithm

Public-key Encryption Schemes

Information Set

Information Set

 $\mathcal{I} \subseteq \{1, \ldots, n\}$ of size k, information set of the [n, k]- \mathcal{C} if:

$$\forall x \in \mathbb{F}_q^k$$
: $\exists (unique) c \in \mathcal{C} : c_{\mathcal{I}} = x$

Exercise

 \mathcal{I} inf set for $\mathfrak{C} \iff \forall \mathsf{G}$ generator matrix of \mathfrak{C} , $\mathsf{G}_{\mathcal{I}}$ is invertible

 $\iff \forall H$ parity-check matrix of $\mathfrak{C},\ H_{\overline{\mathcal{I}}}$ is invertible

 $M_{\mathcal{I}}$ matrix whose <u>columns</u> are those of M which are indexed by \mathcal{I} .

Basic on Code

The Decoding Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

Prange's

Algorithm

Public-key Encryption

Information Set

 $\mathcal{I} \subseteq \{1, \dots, n\}$ of size k, information set of the [n, k]- \mathcal{C} if:

$$\forall x \in \mathbb{F}_q^k$$
: $\exists (unique) c \in \mathcal{C} : c_{\mathcal{I}} = x$

Exercise

 $\iff \forall H$ parity-check matrix of $\mathfrak{C},\ H_{\overline{\mathcal{I}}}$ is invertible

Information Set

 $M_{\mathcal{I}}$ matrix whose <u>columns</u> are those of M which are indexed by \mathcal{I} .

 $\forall x \in \mathbb{F}_q^k$: $\exists (unique) c \in \mathcal{C} \text{ that we compute easily} : <math>c_{\mathcal{I}} = x$

Thomas Debris-Alazard

Basic on Code

The Decoding

Worst-case

An easy case:

Average-case

Search-to-Decision Reduction

A quick recap

Codes

Prange's Algorithm

Public-key Encryption Schemes

Prange's algorithm

- Given: \mathbb{C} an [n, k]-code and $y \stackrel{\mathsf{def}}{=} \mathsf{c}^{\mathsf{sol}} + \mathsf{e}^{\mathsf{sol}}$ where $\left\{ \begin{array}{l} \mathsf{c}^{\mathsf{sol}} \in \mathbb{C} \\ \left| \mathsf{e}^{\mathsf{sol}} \right| = t \end{array} \right.$
- Recover: e^{sol}
- 1. Pick an information set \mathcal{I} ,
- **2.** Compute the unique $c \in \mathcal{C}$ s.t

$$c_{\boldsymbol{\mathcal{I}}}=y_{\boldsymbol{\mathcal{I}}}$$

3. You win if |y - c| = t, namely

$$y_{\mathcal{I}} = c_{\mathcal{I}}^{sol} \iff e_{\mathcal{I}}^{sol} = 0.$$

Otherwise, go back to 1.

Complexity of the algorithm: number of times we pick *I*

Thomas Debris-Alazard

Basic on Code

The Decoding Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Rando

Prange's Algorithm

Public-key Encryption Schemes

Prange's algorithm

Our aim: describing Prange's algorithm

Two points of view:

- noisy codewords,
- syndromes and parity-check matrices.

Thomas Debris-Alazard

Basic on Code

The Decoding Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Random

Prange's Algorithm

Public-key Encryption Schemes

Prange's algorithm

Our aim: describing Prange's algorithm

Two points of view:

- noisy codewords,
- syndromes and parity-check matrices.

Thomas Debris-Alazard

Basic on Code

The Decoding Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Randon Codes

Prange's Algorithm

Public-key Encryption

Syndromes and parity-check matrices

Fixing (H, s
$$\stackrel{\text{def}}{=}$$
 He^T) where |e| = t .

 \longrightarrow Linear system: $n-k$ equations and n unknowns (H $\in \mathbb{F}_q^{(n-k)\times n}$)

But...

Thomas Debris-Alazard

The Decoding

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

Prange's Algorithm

Syndromes and parity-check matrices

Fixing
$$(H, s \stackrel{\text{def}}{=} He^T)$$
 where $|e| = t$.

 \longrightarrow Linear system: n-k equations and n unknowns $(\mathsf{H} \in \mathbb{F}_a^{(n-k) \times n})$

But...

with a non-linear constraint (|e| = t)

Thomas Debris-Alazard

Basic on Code

The Decoding Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decis

A quick recap

About Randon

Prange's Algorithm

Public-key Encryption

Syndromes and parity-check matrices

Fixing
$$(H, s \stackrel{\text{def}}{=} He^T)$$
 where $|e| = t$.

 \longrightarrow Linear system: n-k equations and n unknowns $(\mathsf{H} \in \mathbb{F}_q^{(n-k) \times n})$

But...

with a non-linear constraint (|e| = t)

Prange's algorithm:

fixing k unknowns,

solving a square $(n - k) \times (n - k)$ linear system, hoping the solution has the good Hamming weight.

Thomas Debris-Alazard

An easy case:

Average-case

Reduction

Prange's Algorithm

Extended Prange's algorithm

- 1. Picking the information set.
 - \mathcal{I} of size k. If $H_{\overline{\epsilon}} \in \mathbb{F}_{n}^{(n-k)\times(n-k)}$ is not of full-rank, pick another \mathcal{T} .
- 2. Linear algebra. S non-singular s.t $SH_{\overline{\tau}} = 1_{n-k}$ (Gaussian elimination).
- 3. Test Step. $x \in \mathbb{F}_q^k$ and $e \in \mathbb{F}_q^n$ be s.t

$$e_{\overline{\mathcal{I}}} = (s - xH_{\mathcal{I}}^{\mathsf{T}}) S^{\mathsf{T}}$$
 ; $e_{\mathcal{I}} = x$. (1)

If $|e| \neq t$ go back to Step 1, otherwise it is a solution.

Correction

On board!

Thomas Debris-Alazard

Basic on Code

The Decoding

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Random

Prange's Algorithm

Public-key Encryption

Extended Prange's algorithm

Exercise

Describe Prange's algorithm with generator matrices, three steps and the vector x.

Thomas Debris-Alazard

Basic on Code

The Decoding

Worst-case

An easy case:

Average-case

Search-to-Decision Reduction

A quick recap

Codes

Prange's Algorithm

Public-key Encryption Schemes

Hardness of DP(I)

Each iteration: we test if |e| = t where

$$e_{\overline{\mathcal{I}}} = (s - xH_{\mathcal{I}}^{\mathsf{T}}) S^{\mathsf{T}} \in \mathbb{F}_q^{n-k}$$
 ; $e_{\mathcal{I}} = x$.

Suppose s uniformly distributed, then:

$$\mathbb{E}(|\mathsf{e}|) = |\mathsf{x}| + \frac{q-1}{q} \, (\mathsf{n}-\mathsf{k}).$$

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision

A quick reca

About Randor

Prange's Algorithm

Public-key Encryption Schemes

Hardness of DP(I)

Each iteration: we test if |e| = t where

$$\mathbf{e}_{\overline{\mathcal{I}}} = \left(\mathbf{s} - \mathbf{x} \mathbf{H}_{\mathcal{I}}^{\mathsf{T}}\right) \mathbf{S}^{\mathsf{T}} \in \mathbb{F}_q^{n-k} \quad ; \quad \mathbf{e}_{\mathcal{I}} = \mathbf{x}.$$

Suppose s uniformly distributed, then:

$$\mathbb{E}(|\mathsf{e}|) = |\mathsf{x}| + \frac{q-1}{q}(\mathsf{n}-\mathsf{k}).$$

Carefully choosing $|x| \in [0, k]$ (k number of unknowns we can fix) we can easily reach any Hamming weight in

$$\left[\left[\frac{q-1}{q}(n-k),k+\frac{q-1}{q}(n-k)\right]\right].$$

Worst-cas

An easy case: Reed-Solomon cod

Average-case

Search-to-Decision Reduction

A quick recap

About Rando

Prange's Algorithm

Public-key Encryption Schemes

Hardness of DP(II)

$$k = Rn$$
 and $t = \tau n$

- $\frac{q-1}{q}(n-k) = n \frac{q-1}{q} (1-R),$
- $k + \frac{q-1}{q}(n-k) = n \left(R + \frac{q-1}{q}(1-R)\right).$

Since 60 years:

no known poly-time algorithm in the red area (even quantumly)

Thomas Debris-Alazard

Basic on Codes

The Decoding

Worst-cas

An easy case:

Average-case

Search-to-Decision Reduction

A quick recap

Codes

Prange's Algorithm

Public-key Encryption Schemes

Asymptotic Exponent

Figure: Exponent $\alpha(\tau)$ of Prange's algorithm complexity $2^{\alpha(\tau)n}$ to solve $\mathsf{DP}(n,q,R,\tau)$ for q=3 as function of τ .

Figure: Exponent $\alpha(\tau)$ of Prange's algorithm complexity $2^{\alpha(\tau)n}$ to solve $DP(n,q,R,\tau)$ for R=1/2 as function of τ .

Thomas Debris-Alazard

Basic on Code

The Decoding Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Random

Prange's

Public-key Encryption Schemes 1 Basic on Codes

2 The Decoding Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

3 A quick recap

4 About Random Codes

6 Prange's Algorithm

6 Public-key Encryption Schemes

Thomas Debris-Alazard

Basic on Codes

The Decoding Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decisio Reduction

A quick recap

Duamera's

Algorithm

Public-key Encryption Schemes

McEliece's Encryption

Key Generation

• $(G_{pk}, t, T) \leftarrow Trappdoor()$ where G_{pk} represents a code s.t

$$(\mathsf{mG}_{pk} + \mathsf{e}, T) \stackrel{\mathsf{easy}}{\longrightarrow} \mathsf{m} \quad (\mathsf{if} \ |\mathsf{e}| \le t)$$

• Secret Key: T

• Public Key: Gpk

Encryption of m

Pick random
$$e \in \{z : |z| = t\}$$
 and output $mG_{pk} + e$

Decryption of $mG_{pk} + e$

Use *T* to compute

$$(mG_{pk} + e, T) \longrightarrow m$$

Thomas Debris-Alazard

Basic on Code

The Decoding Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

Prange's

Algorithm

Public-key Encryption Schemes

Security of McEliece

McEliece

pk: G_{pk} representation of a code, sk: a trapdoor T

The security of McEliece relies on 2 assumptions:

- 1. The hardness of DP,
- 2. We can't distinguish G_{pk} and G_u (uniform).

Can we distinguish the public code from a random one?

Be extremely careful...

The Decoding Problem

Worst-case

An easy case: Reed-Solomon cod

Average-case

Search-to-Decision

A quick reca

About Dondon

Codes

Prange's Algorithn

Public-key Encryption Schemes

An instantiation

Codes that we know how to decode: $GRS_k(x, z)$

• Public Key: a representation of $GRS_k(x,z)$

$$\begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ x_1^2 & x_2^2 & \cdots & x_n^2 \\ \vdots & \vdots & \vdots & \vdots \\ x_1^k & x_2^k & \cdots & x_n^k \end{pmatrix} \begin{pmatrix} z_1 & & & 0 \\ & z_2 & & \\ & & \ddots & \\ 0 & & & z_n \end{pmatrix}$$

• Secret Key:

What is the secret key? Can we give the above matrix as a public key?

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision

A quick recap

About Rando

Prango's

Algorithn

Public-key Encryption Schemes

An instantiation

Codes that we know how to decode: $GRS_k(x,z)$

• Public Key: a representation of $GRS_k(x, z)$

$$\mathsf{G}_{\mathsf{pk}} = \mathsf{S} \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ x_1^2 & x_2^2 & \cdots & x_n^2 \\ \vdots & \vdots & \vdots & \vdots \\ x_1^k & x_2^k & \cdots & x_n^k \end{pmatrix} \begin{pmatrix} z_1 & & & 0 \\ & z_2 & & \\ & & \ddots & \\ 0 & & & z_n \end{pmatrix}$$

• Secret Key: T = (x, z)

This scheme is broken: exercise 1 in sheet 2

Thomas Debris-Alazard

Basic on Codes

The Decoding

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Randon

Prange's

Public-key Encryption Schemes

A bad (but original) presentation of McEliece

https://en.wikipedia.org/wiki/McEliece_cryptosystem

Thomas Debris-Alazard

Basic on Code

The Decoding

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Randon

Prange's

Public-key Encryption Schemes

There are no permutations in McEliece cryptosystem

Thomas Debris-Alazard

Basic on Code

The Decoding

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Randor

Duamer's

Algorithm

Public-key Encryption Schemes

Don't forget Alekhnovich

Alekhnovich like encryption scheme: Security does not rely on "structured" codes

Thomas Debris-Alazard

Basic on Code

The Decoding Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Randon

Prange's

Algorithm

Public-key Encryption Schemes

Codes at the NIST

McEliece

- Classic McEliece: Goppa codes,
- BIKE: QC-MDPC codes.

Alekhnovich

• HQC: does not use structured codes as trapdoor.

Thomas Debris-Alazard

Basic on Code

The Decoding Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Rando

Prange's

Public-key Encryption Schemes

Conclusion

Many other topics:

- Search-to-decision reductions, average to average reductions using DP, ...
- Code-based primitives like signatures,
- Change the Hamming metric (rank metric, Exercise Sheet 2)
- etc...

If you are interested by the code-based crypto: lecture notes available here http://tdalazard.io/

Thomas Debris-Alazard

Basic on Code

The Decoding Problem

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Rando

Prange's

Public-key Encryption Schemes

Conclusion

Many other topics:

- Search-to-decision reductions, average to average reductions using DP, ...
- Code-based primitives like signatures,
- Change the Hamming metric (rank metric, Exercise Sheet 2)
- etc...

If you are interested by the code-based crypto: lecture notes available here http://tdalazard.io/

Thank You!

Thomas Debris-Alazard

Basic on Code

The Decoding

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Random

Codes

Prange's Algorithm

Public-key Encryption Schemes

About LPN

Problem (Learning with Parity Noise Problem)

• Oracle: An oracle $\mathcal{O}_{s,\tau}(\cdot)$ parametrized by s and τ s.t on a call it outputs $(a,s\cdot a+e)$ where $a\leftarrow \mathsf{Unif}(\mathbb{F}_2^k)$ and e Bernoulli of parameter τ .

• Input: $\mathcal{O}_{\mathsf{s},\tau}(\cdot)$

Output: s

Is it a decoding problem using codes?

Thomas Debris-Alazard

Basic on Code

The Decoding

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Randon

Codes

Algorithm

Public-key Encryption Schemes

About LPN

Problem (Learning with Parity Noise Problem)

• Oracle: An oracle $\mathcal{O}_{s,\tau}(\cdot)$ parametrized by s and τ s.t on a call it outputs $(a,s\cdot a+e)$ where $a\leftarrow \mathsf{Unif}(\mathbb{F}_2^k)$ and e Bernoulli of parameter τ .

• Input: $\mathcal{O}_{\mathsf{s},\tau}(\cdot)$

Output: s

Is it a decoding problem using codes?

Yes! But be careful, there are differences with DP...

Thomas Debris-Alazard

Basic on Code

The Decoding

Worst-case

An easy case: Reed-Solomon codes

Average-case

Search-to-Decision Reduction

A quick recap

About Rando

Codes

Prange's Algorithn

Public-key Encryption Schemes

In practice: DP not LPN

n calls to the oracle $\mathcal{O}_{s,\tau}(\cdot)$:

$$\langle s, a_1 \rangle + e_1, \ldots, \langle s, a_n \rangle + e_n.$$

These *n* samples can be rewritten as SG + e where columns of $G \in \mathbb{F}_2^{k \times n}$ are the a_i 's and $e \stackrel{\text{def}}{=} (e_1, \dots, e_n)$.

n is unlimited!

Thomas Debris-Alazard

Basic on Code

The Decoding

Worst-cas

An easy case: Reed-Solomon codes

Average-case

Search-to-Decisio

A quick recap

About Rando

Prange's

Public-key Encryption Schemes

In practice: DP not LPN

n calls to the oracle $\mathcal{O}_{s,\tau}(\cdot)$:

$$\langle s, a_1 \rangle + e_1, \ \ldots, \ \langle s, a_n \rangle + e_n.$$

These *n* samples can be rewritten as sG + e where columns of $G \in \mathbb{F}_2^{k \times n}$ are the a_i 's and $e \stackrel{\text{def}}{=} (e_1, \dots, e_n)$.

n is unlimited!

- DP: fixed number of samples
 problem used to design encryption or signature schemes, ensure
 the security
- LPN: unlimited number of samples
 problem not used to design encryption or signature schemes,
 sometimes useful in reductions