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The Content

3 lecture notes (long, for further reading): http://tdalazard.io/

1. An Intractable Problem Related to Codes, Decoding

2. Random Codes

3. Information Set Decoding Algorithms

→ Tuesday and Friday’ presentations are an overview!

2 exercise sheets

1. starting exercises to get familiar with codes & crypto,

2. two cryptanalysis (if you are already familiar with codes).
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Our Lectures

Codes
basic definitions

Decoding Problem
• Worst-Case

• An easy case

• Average case

Random codes

Average-case
hardness
Prange’s algo

Public-key
Encryptions

McEliece

Alekhnovich

Today Friday

Don’t hesitate to interrupt!
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An Old History

Shannon (1948/1949) introduced the following problem,

s

A

+

e

A
,

→ Matrix A and vectors s, e are binary (∈ F2)

Aim

Recover s
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There are trapdoors(I)!
McEliece (1978):

A← Trapdoor(): public-key

message

A

+

e

• With the trapdoor, easy to recover message if e “short”,

• Without, hard
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There are trapdoors(II)!
Alekhnovich (2003):

Sk: s with few 1 s.t A s = 0 Pk: A

• To encrypt b = 1, send u ←− Unif

• To encrypt b = 0, send

m

A

+
e with few 1
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You said code?

s

A
: s ∈ Fk

2

is known as a code!

To understand what is a code will be useful to

1. build trapdoors

2. understand the hardness of the problem
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Codes: used in
telecommunications!

How to transmit k bits over a noisy channel?

1. Fix C subspace ⊆ Fn
2 of dimension k

2. Map (m1, . . . ,mk) −→ c = (c1, . . . , cn) ∈ C

(adding n − k bits redundancy)

3. Send c across the noisy channel

Sender
m

Encoding
c
Noisy Channel

Error e

c⊕ e
Decoding

c? m

−→ from c⊕ e: how to recover e and then c?
(Decoding Problem)
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Hamming distance

Real life scenario, c + e with e = (e1, . . . , en) s.t:

∀i , P(ei = 1) = p and P(ei = 0) = 1− p

−→ Each bit of c is flipped with probability p

Given a received corrupted word y

P (c was sent | y is received) = pdH(c,y)(1− p)n−dH(c,y)

where dH(c, y)
def
= ] {i : ci 6= yi} (Hamming distance)

Any decoding candidate c ∈ C is even more likely as it is close to the
received message y for the Hamming distance.
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Basic Definitions

Fn
q denotes the finite field with q elements

Linear Code
A linear code C of length n and dimension k ([n, k]-code):

subspace of Fn
q of dimension k

n length ; k dimension
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Example of Codes

First examples of codes:

1. {(f (x1), . . . , f (xn)) : f ∈ Fq[X ] and deg(f ) < k} where the
xi ’s are distinct elements of Fq,

2. {(u, u + v) : u ∈ U and v ∈ V } where U (resp. V ) is an
[n, kU ]q-code (resp. [n, kV ]q-code).

→ What are the lengths and dimensions?

(exercise)
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How to represent a code(I)?

C be an [n, k]-code

Basis representation: g1, . . . , gk basis of C

−→ C =
{
mG : m ∈ Fk

q

}
where the rows of G ∈ Fk×n

q are the gi ’s

Reciprocally, any G ∈ Fk×n
q of rank k defines the [n, k]-code

C
def
=
{
mG : m ∈ Fk

q

}

G: generator (matrix)
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How to represent a code(II)?
Dual code
Given C, its dual C∗ is the [n, n − k]-code

C∗
def
=

{
c∗ ∈ Fn

q : ∀c ∈ C, 〈c, c∗〉 =
n∑

i=1

cic
∗
i = 0 ∈ Fq

}
.

Parity-check representation: h1, . . . , hn−k basis of C∗

−→ C = {c : Hcᵀ = 0} where the rows of H ∈ F(n−k)×n
q are the hi ’s

Reciprocally, any H ∈ F(n−k)×n
q of rank n − k defines the [n, k]-code

C
def
=
{
c : Hcᵀ = 0

}
H: parity-check (matrix)
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A remark

• G ∈ Fk×n
q generator matrix of C (C = {mG : m})

−→ SG still generator matrix of C when

S ∈ Fk×k
q non-singular

• H ∈ F(n−k)×n
q parity-check matrix of C (C = {c : Hcᵀ = 0})

−→ SH still parity-check matrix of C when

S ∈ F(n−k)×(n−k)
q non-singular
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From one representation to
the other?

G ∈ Fk×n
q generator

easy to compute?←→ H ∈ F(n−k)×n
q parity-check

YES!

1. Show that if H ∈ F(n−k)×n
q has rank n − k and GHᵀ = 0, then

H parity-check (exercise),

2. Perform a Gaussian elimination (see the board).
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Generator or parity-check?

Would you rather choose generator or parity-check representation?

Sorry for the team generator matrix :(

Usually, the parity-check representation is more “natural”...
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Hamming code

Let CHam be the [7, 4]-code of generator matrix:

G def
=


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1



H def
=

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


has rank 3 and verifies GHᵀ = 0.

Let c + e where
{

c ∈ CHam

|e| = 1
: how to easily recover e?
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Modulo the code

Given c + e: recover e.

−→ Make modulo C to extract the information about e

Coset space: Fn
q/C

] Fn
q/C = qn−k and Fn

q/C =
{
xi + C : 1 ≤ i ≤ qn−k

}

A natural set of representatives via a parity-check H: syndromes

xi + C ∈ Fn
q/C 7−→ Hxi

ᵀ ∈ Fn−k
q (called a syndrome)

is an isomorphism
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Syndrome or noisy
codewords?

C be an [n, k]-code of parity-check matrix H

Noisy codeword Syndrome
c + e Heᵀ

• From c + e: H(c + e)
ᵀ

= Hcᵀ + Heᵀ = Heᵀ

• From Heᵀ: compute with linear algebra y s.t

Hyᵀ = Heᵀ ⇐⇒ H(y − e)
ᵀ

= 0 ⇐⇒ y−e ∈ C ⇐⇒ y = c+e
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Minimum distance

Hamming weight
Given x ∈ Fn

q, its Hamming weight:

|x| def
= ] {i : xi 6= 0}

Minimum distance
The minimum distance of C is

dmin(C)
def
= min {|c| : c ∈ C, c 6= 0} .

dmin(C) important quantity:

“geometry” of C ; “efficiency” of C ; “security” of C
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The Decoding Problem
Two formulations:

Problem (Noisy Codeword Decoding)

Given G ∈ Fk×n
q of rank k , t ∈ J0, nK, y ∈ Fn

q where y = c + e with
c = mG for some m ∈ Fk

q and |e| = t, find e.

Problem (Syndrome Decoding)

Given H ∈ F(n−k)×n
q of rank n − k , t ∈ J0, nK, s ∈ Fn−k

q where
Heᵀ = sᵀ with |e| = t, find e.

−→ They are equivalent!

n length ; k dimension ; t decoding distance
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Equivalent representations

Let, A be s.t A(G,mG + e)→ e

Given (H,Heᵀ): our aim, recover e using A

1. Compute with linear algebra G (rank k) s.t GHᵀ = 0

2. Compute (again) with linear algebra y s.t Hyᵀ = Heᵀ.

3. Notice that H(y − e)
ᵀ

= 0 ⇐⇒ y − e = mG for some m

4. Feed (G, y) to A, it recovers e.

Exercise: show that the reciprocal holds

In what follows, we only keep the parity-check representation!
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NP-completeness

Problem (Worst-case decisional decoding problem)

• Input: H ∈ F(n−k)×n
q , s ∈ Fn−k

q where n, k ∈ N with k ≤ n and
an integer t ≤ n.

• Decision: it exists e ∈ Fn
q of Hamming weight t such Heᵀ = sᵀ?

This problem is NP-complete...

Is it useful? Be careful of the input set...
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Drawback of the
NP-completeness

The above NP-completeness shows that (if P 6= NP)

We cannot easily solve the decoding problem for all codes and all
decoding distances...

Not a safety guarantee for cryptographic applications...
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There are codes and associated distance for which
we know how to decode!
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Generalized Reed-Solomon

GRS codes
z ∈ (F?q)n and x ∈ Fn

q s.t xi 6= xj (in particular n ≤ q) and k ≤ n.
The code GRSk(x, z) is defined as

GRSk(x, z)
def
= {(z1f (x1), . . . , znf (xn)) : f ∈ Fq[X ] and deg(f ) < k}

−→ These codes are used in QR-codes!

Exercise: GRSk(x, z) has generator matrix

G def
=


1 1 · · · 1
x1 x2 · · · xn
x2
1 x2

2 · · · x2
n

...
...

...
...

xk1 xk2 · · · xkn



z1 0

z2
. . .

0 zn
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Berlekamp-Welsh algorithm

Decoding algorithm

Given, GRSk(x, z) and c + e s.t
{

c ∈ GRSk(x, z)

|e| ≤
⌊
n−k

2

⌋
Then, easy to recover (c, e).

Proof.
On board!
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The average decoding
problem

DP(n, q,R, τ), k def
= Rn and t

def
= τn

Sample: H ← Unif(F(n−k)×n
q ) x← Unif(z : |z| = t)

Given: H s = H x
,

Recover:
e

s.t H e = s and e ∈ {z : |z| = t}

With respect to τ , the solution will be unique or not...
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Average hardness?

Let, ε = PH,x
(
A(H, s = xHᵀ

) = e s.t |e| = t and eHᵀ
= s
)

Then, using the law of total probability:

ε =
1

qk (n−k) (q − 1)t
(
n
t

) ∑
H∈F(n−k)×n

q

|x|=t

P(A(H, s = xHᵀ
) = e

s.t |e| = t and eHᵀ
= s)

All known algorithms have a complexity T/ε (T running time)

T

ε
= 2α(q,R,τ) n(1+o(1))

for some α(q,R, τ) ≥ 0
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Its hardness

Hard HardEasy
τ

0 (1− R) q−1
q R + (1− R) q−1

q 1

Figure: Hardness of DP(n, q,R, τ) as function of τ .

• McEliece encryption: τ = Θ
(

1
log n

)
,

• Other encryption schemes: τ = Θ
(

1√
n

)
,

• Authentication protocol: τ = C constant quite small,

• Signature Wave: τ = C large constant, C ≈ 0.95.
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And the generator
representation?

DP′(n, q,R, τ). Let k
def
= bRnc and t

def
= bτnc

• Input : (G, y def
= sG + x) where G, s and x are uniformly

distributed over Fk×n
q , Fk

q and words of Hamming weight t in
Fn
q.

• Output : an error e ∈ Fn
q of Hamming weight t such that

y − e = mG for some m ∈ Fk
q .

Exercise

For any algorithm A solving DP′ with probability ε and time T :
describe B which solves DP in the same time with probability
≥ ε− O

(
q−min(k,n−k)

)
(and the reciprocal)

−→ Same average hardness with syndromes or noisy codewords
formalism!
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Average Decisional Decoding
Problem

DDP(n, q,R, τ), k def
= bRnc and t

def
= bτnc.

• Distributions:
• D0 : (H, s) be uniformly distributed over F(n−k)×n

q × Fn−k
q .

• D1 : (H, xHᵀ
) where H (resp. x) being uniformly distributed

over F(n−k)×n
q (resp. words of Hamming weight t).

• Input: (H, s) distributed according to Db where b ∈ {0, 1} is
uniform,

• Decision: b′ ∈ {0, 1}.

Is this problem strictly easier than its search version?

→ No! They are equivalent (Goldreich-Levin hardcore predicate)
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An old problem: decoding
Shannon (1948/1949) introduced the decoding problem,

s

A

+

e

A
,

Aim

Recover s

There are cryptosystem whose security relies on this problem:
code-based crypto (McEliece 78 ; Alekhnovich 03 ; etc)
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Two representations of codes

C be an [n, k]-code

n length ; k dimension

C
def
=
{
mG : m ∈ Fk

q

}
G ∈ Fk×n

q rank k : generator (matrix)

C
def
=
{
c : Hcᵀ = 0

}
H ∈ F(n−k)×n

q rank n − k : parity-check (matrix)
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Average Decoding Problem

DP(n, q,R, τ), k def
= Rn and t

def
= τn

Sample: H ← Unif(F(n−k)×n
q ) x← Unif(z : |z| = t)

Given: H s = H x
,

Recover:
e

s.t H e = s and e ∈ {z : |z| = t}
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A motivation
Average Decoding Problem (DP)

• Sample: H← Unif
(
F(n−k)×n
q

)
, x← Unif

({
z ∈ Fn

q : |z| = t
})

,

• Given: (H,Hxᵀ),

• Find e ∈ Fn
q s.t

{
Heᵀ = Hxᵀ

|e| = t

A trivial algorithm:

pick e ∈
{
z ∈ Fn

q : |z| = t
}
and test if Heᵀ = Hxᵀ

• If one solution: probability of success 1
]{z∈Fn

q : |z|=t}

• If N solutions: probability of success ≈ N
]{z∈Fn

q : |z|=t}

What is the value of N?
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The value of N?

To compute N: use the theory of random codes!

Random Code

C =
{
c ∈ Fn

q : Hcᵀ = 0
}
: H← Unif

(
F(n−k)×n
q

)
defines a random code
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Random codes: two models

And generator matrices?

Random Code

• C =
{
mGu : m ∈ Fk

q

}
where Gu ← Unif

(
Fk×n
q

)
or

• C =
{
c ∈ Fn

q : Huc
ᵀ = 0

}
where Hu ← Unif

(
F(n−k)×n
q

)

Are the models equivalent? Do they define a random [n, k]-code?
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At first sight

Random Code

• C =
{
mGu : m ∈ Fk

q

}
where Gu ← Unif

(
Fk×n
q

)
→ dimC ≤ k as rank(Gu) ≤ k

• C =
{
c ∈ Fn

q : Huc
ᵀ = 0

}
where Hu ← Unif

(
F(n−k)×n
q

)
→ dimC ≥ k as rank(Hu) ≤ n − k

Both models do not seem to be equivalent... (Spoil: they are!)
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An important tool:
statistical distance

Statistical distance
X and Y be random variables

∆(X ,Y )
def
=

1
2

∑
a∈E
|P (X = a)− P (Y = a)| .

A crucial poperty: data processing inequality

∆ (f (X ), f (Y )) ≤ ∆ (X ,Y )

Consequence: ∀A algorithm

|PX (A(X ) = “success”)− PY (A(Y ) = “success”)| ≤ ∆(X ,Y ).

50 / 86



Code-based
Cryptography

Thomas
Debris-Alazard

Basic on Codes

The Decoding
Problem

Worst-case

An easy case:
Reed-Solomon codes

Average-case

Search-to-Decision
Reduction

A quick recap

About Random
Codes

Prange’s
Algorithm

Public-key
Encryption
Schemes

Same models

Gu or Hu-models ⇐⇒ draw uniformly an [n, k]-code:

Gk ∈ Fk×n
q (Hn−k ∈ F(n−k)×n

q ) be uniform of rank k (resp. n − k):

∆ (Gu,Gk) = O
(
q−(n−k)

) (
resp. ∆ (Hu,Hn−k) = O

(
q−k

))

Computation are the same in Gu and Hu-models:

Let E be a set of codes (defined as an event). We have,

|PGu (E)− PHu (E)| = O
(
q−min(k,n−k)

)
.
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DP: generator or
parity-check?

DP′(n, q,R, τ). Let k
def
= bRnc and t

def
= bτnc

• Input : (Gu, y
def
= sGu + x) where Gu, s and x are uniformly

distributed over Fk×n
q , Fk

q and words of Hamming weight t.

• Output : an error e ∈ Fn
q of Hamming weight t such that

y − e = mGu for some m ∈ Fk
q .

Exercise

For any algorithm A solving DP′ with probability ε and time T :
describe B which solves DP in the same time with probability
≥ ε− O

(
q−min(k,n−k)

)
(and the reciprocal)
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The proof

(H,Hxᵀ) be an instance of DP

The algorithm B:

1. Compute with linear algebra G (rank k) s.t GHᵀ = 0.

2. Compute with linear algebra y such that Hyᵀ = Hxᵀ

3. Pick m ∈ Fk
q uniformly, y = y + mG

4. Feed (G, y) to A and output its output

Probability of success of B

PHu (B(Hu,Hux
ᵀ

) = “succ”)

≥ PHn−k

(
B
(
Hn−k ,Hn−kx

ᵀ)
= “succ”

)
−∆ (Hu,Hn−k)

= PGk
(A (Gk ,mGk + x) = “succ”)−∆ (Hu,Hn−k)

≥ PGu (A (Gu,mGu + x) = “succ”)−∆(Gu,Gk)−∆ (Hu,Hn−k)
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A first computation with
random codes

s and y 6= 0 (fixed), Hu ← Unif
(
F(n−k)×n
q

)
, then:

PHu (Huy
ᵀ

= s) =
1

qn−k
.

Proof.
On board!

Lattice analogue: 1
qn−k = qk

qn = ]C
]Fn

q
plays the role of 1

|Λ|
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What do we expect?

Given (H, s) we are ready to compute:

N(Hu, t) = ]
{
e ∈ Fn

q : |e| = t and Hue
ᵀ = s

}
.

Proposition
We have

EHu (N(Hu, t)) =
]
{
e ∈ Fn

q : |e| = t
}

qn−k

Proof.
On board!

EHu (N(Hu, t)) independent of s

s = 0: average number of codewords of weight t.
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Asymptotic behaviour
]
{
e ∈ Fn

q : |e| = t
}

=
(
n
t

)
(q − 1)t

(
n
t

)
(q − 1)t = O

(
1√
n

)
qn h( t

n )

h(x)
def
= −x logq

(
x

q−1

)
− (1− x) logq(1− x).

Figure: lim
n→+∞

1
n
logq EHu (N(Hu, t)) s.t q = 3, k/n = 1/4, fct of τ = t/n.
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Hardness of DP?

Hard HardEasy
τ

0 (1− R) q−1
q R + (1− R) q−1

q

τ+τ−

1

exponentially many solutions

one solution one solution
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Be more accurate: order 1

For now, only EHu (N(Hu, t)) is known

where N(Hu, t) = ]
{
e ∈ Fn

q : |e| = t and Hue
ᵀ = s

}
.

Be more precise?

Proposition (First Moment Technique)

For any a > 0,

PHu (N(Hu, t) > a) ≤ 1
a

(
n
t

)
(q − 1)t

qn−k
.

Proof.

Markov: PHu (N(Hu, t) > a) ≤ EHu (N(Hu,t))
a
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Order 2?

We can be even more precise: Bienaymé-Tchebychev!

(second moment technique)
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Expected minimum distance

EHu (] {c : Huc
ᵀ = 0 and |c| = t}) =

(n
t)(q−1)t

qn−k

Expected minimum distance of C defined by Hu?

Gilbert-Varshamov distance

Smallest t such that
(
n
t

)
(q − 1)t = qn−k

dmin(C) = tGV = Cn for some constant C > 0.

60 / 86



Code-based
Cryptography

Thomas
Debris-Alazard

Basic on Codes

The Decoding
Problem

Worst-case

An easy case:
Reed-Solomon codes

Average-case

Search-to-Decision
Reduction

A quick recap

About Random
Codes

Prange’s
Algorithm

Public-key
Encryption
Schemes

Expected minimum distance

EHu (] {c : Huc
ᵀ = 0 and |c| = t}) =

(n
t)(q−1)t

qn−k

Expected minimum distance of C defined by Hu?

Gilbert-Varshamov distance

Smallest t such that
(
n
t

)
(q − 1)t = qn−k

dmin(C) = tGV = Cn for some constant C > 0.

60 / 86



Code-based
Cryptography

Thomas
Debris-Alazard

Basic on Codes

The Decoding
Problem

Worst-case

An easy case:
Reed-Solomon codes

Average-case

Search-to-Decision
Reduction

A quick recap

About Random
Codes

Prange’s
Algorithm

Public-key
Encryption
Schemes

Balls and minimum distance
(worst case)

C be a fixed code of minimum distance dmin(C)

∀c, c′ ∈ C, c 6= c′ : BH

(
c, dmin(C)−1

2

)⋂
BH

(
c′, dmin(C)−1

2

)
= ∅

Proof.
On board!
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Balls and minimum distance
(average case)

For a random code:

dmin(C) = tGV

C be a random code

∀c, c′ ∈ C, c 6= c′ : BH (c, tGV)
⋂
BH (c′, tGV) ≈ ∅

Not tGV
2 !
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Security?

Aim of any code-based cryptosystem:
security relies on the hardness of the decoding problem (DP)

How to trust DP hardness?

−→ By studying algorithms solving DP!

An old history (since 60 years)

Best algorithms: refinement of Prange’s algorithm (1962)
Information Set Decoding (ISD) algorithms
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Prange’s algorithm

Our aim: describing Prange’s algorithm

Two points of view:

• noisy codewords,

• syndromes and parity-check matrices.
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Noisy codewords

• Given: C an [n, k]-code and c + e where
{

c ∈ C

|e| = t

• Recover: e

First remark of Prange: Information Set!

Information Set
I ⊆ {1, . . . , n} of size k , information set of of the [n, k]-C if:

∀x ∈ Fk
q : ∃(unique) c ∈ C : cI = x (where cI = (ci )i∈I)

Every codewords: uniquely determined by k = dim(C) coordinates
given by I
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Information Set

Information Set
I ⊆ {1, . . . , n} of size k , information set of the [n, k]-C if:

∀x ∈ Fk
q : ∃(unique) c ∈ C : cI = x

Exercise

I inf set for C ⇐⇒ ∀G generator matrix of C, GI is invertible

⇐⇒ ∀H parity-check matrix of C, HI is invertible

MI matrix whose columns are those of M which are indexed by I.

∀x ∈ Fk
q : ∃(unique) c ∈ C that we compute easily : cI = x
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Prange’s algorithm

• Given: C an [n, k]-code and y def
= csol + esol where

{
csol ∈ C∣∣esol

∣∣ = t

• Recover: esol

1. Pick an information set I,
2. Compute the unique c ∈ C s.t

cI = yI

3. You win if |y − c| = t, namely

yI = csol
I ⇐⇒ esol

I = 0.

Otherwise, go back to 1.

Complexity of the algorithm: number of times we pick I
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Prange’s algorithm

Our aim: describing Prange’s algorithm

Two points of view:

• noisy codewords,

• syndromes and parity-check matrices.
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Syndromes and parity-check
matrices

Fixing (H, s def
= Heᵀ) where |e| = t.

−→ Linear system: n − k equations and n unknowns

(H ∈ F(n−k)×n
q )

But...

with a non-linear constraint (|e| = t)

Prange’s algorithm:

fixing k unknowns,

solving a square (n − k)× (n − k) linear system,

hoping the solution has the good Hamming weight.
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Extended Prange’s algorithm

1. Picking the information set.
I of size k . If HI ∈ F(n−k)×(n−k)

q is not of full-rank, pick
another I.

2. Linear algebra.
S non-singular s.t SHI = 1n−k (Gaussian elimination).

3. Test Step.
x ∈ Fk

q and e ∈ Fn
q be s.t

eI =
(
s− xHᵀ

I
)
Sᵀ ; eI = x. (1)

If |e| 6= t go back to Step 1, otherwise it is a solution.

Correction
On board!
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Extended Prange’s algorithm

Exercise
Describe Prange’s algorithm with generator matrices, three steps

and the vector x.
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Hardness of DP(I)

Each iteration: we test if |e| = t where

eI =
(
s− xHᵀ

I
)
Sᵀ ∈ Fn−k

q ; eI = x.

Suppose s uniformly distributed, then:

E (|e|) = |x|+ q − 1
q

(n − k).

Carefully choosing |x| ∈ J0, kK (k number of unknowns we can fix)

we can easily reach any Hamming weight in
s
q − 1
q

(n − k), k +
q − 1
q

(n − k)

{
.
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Hardness of DP(II)

k = Rn and t = τn

• q−1
q (n − k) = n q−1

q (1− R),

• k + q−1
q (n − k) = n

(
R + q−1

q (1− R)
)
.

Hard HardEasy
τ

0 (1− R) q−1
q R + (1− R) q−1

q

τ+τ−

1

exponentially many solutions

one solution one solution

Since 60 years:

no known poly-time algorithm in the red area (even quantumly)
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Asymptotic Exponent
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0.1
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0.3

0.35
 

R= 0.2
R= 0.4
R= 0.6
R= 0.8

Figure: Exponent α(τ) of Prange’s algorithm complexity 2α(τ)n to solve
DP(n, q,R, τ) for q = 3 as function of τ .
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Figure: Exponent α(τ) of Prange’s algorithm complexity 2α(τ)n to solve
DP(n, q,R, τ) for R = 1/2 as function of τ .
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McEliece’s Encryption
Key Generation

• (Gpk , t,T )← Trappdoor() where Gpk represents a code s.t

(mGpk + e,T )
easy−→ m (if |e| ≤ t)

• Secret Key: T

• Public Key: Gpk

Encryption of m

Pick random e ∈ {z : |z| = t} and output

mGpk + e

Decryption of mGpk + e

Use T to compute

(mGpk + e,T ) −→ m
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Security of McEliece

McEliece
pk: Gpk representation of a code, sk: a trapdoor T

The security of McEliece relies on 2 assumptions:

1. The hardness of DP,

2. We can’t distinguish Gpk and Gu (uniform).

Can we distinguish the public code from a random one?

Be extremely careful...
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An instantiation

Codes that we know how to decode: GRSk(x, z)

• Public Key: a representation of GRSk(x, z)
1 1 · · · 1
x1 x2 · · · xn
x2
1 x2

2 · · · x2
n

...
...

...
...

xk1 xk2 · · · xkn



z1 0

z2
. . .

0 zn


• Secret Key:

What is the secret key? Can we give the above matrix as a public
key?
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An instantiation

Codes that we know how to decode: GRSk(x, z)

• Public Key: a representation of GRSk(x, z)

Gpk = S


1 1 · · · 1
x1 x2 · · · xn
x2
1 x2

2 · · · x2
n

...
...

...
...

xk1 xk2 · · · xkn



z1 0

z2
. . .

0 zn


• Secret Key: T = (x, z)

This scheme is broken: exercise 1 in sheet 2
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A bad (but original)
presentation of McEliece

https://en.wikipedia.org/wiki/McEliece_cryptosystem
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There are no permutations in McEliece
cryptosystem
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Don’t forget Alekhnovich

Alekhnovich like encryption scheme:

Security does not rely on “structured” codes
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Codes at the NIST

McEliece
• Classic McEliece: Goppa codes,

• BIKE: QC-MDPC codes.

Alekhnovich
• HQC: does not use structured codes as trapdoor.
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Conclusion

Many other topics:

• Search-to-decision reductions, average to average reductions
using DP, ...

• Code-based primitives like signatures,

• Change the Hamming metric (rank metric, Exercise Sheet 2)

• etc...

If you are interested by the code-based crypto: lecture notes
available here http://tdalazard.io/

Thank You!
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About LPN

Problem (Learning with Parity Noise Problem)

• Oracle: An oracle Os,τ (·) parametrized by s and τ s.t on a call
it outputs (a, s · a + e) where a← Unif(Fk

2) and e Bernoulli of
parameter τ .

• Input: Os,τ (·)
• Output: s

Is it a decoding problem using codes?

Yes! But be careful, there are differences with DP...
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In practice: DP not LPN

n calls to the oracle Os,τ (·):

〈s, a1〉+ e1, . . . , 〈s, an〉+ en.

These n samples can be rewritten as sG + e where columns of
G ∈ Fk×n

2 are the ai ’s and e def
= (e1, . . . , en).

n is unlimited!

• DP: fixed number of samples

problem used to design encryption or signature schemes, ensure
the security

• LPN: unlimited number of samples

problem not used to design encryption or signature schemes,
sometimes useful in reductions
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