Multivariate Quadratic Cryptography

Ward Beullens

August 8, 2022

Excercise session 1

Exercise 1. Are multivariate quadratic maps collision resitant? I.e., given a random quadratic map $\mathcal{P}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{n}$, is it hard to find $\mathbf{x}, \mathbf{x}^{\prime}$ such that $\mathbf{x} \neq \mathbf{x}^{\prime}$ and $\mathcal{P}(\mathbf{x})=\mathcal{P}\left(\mathrm{x}^{\prime}\right)$?

Hint:

Definition 1 (Macaulay matrix). Let $p_{1}, \ldots, p_{m} \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$ be a sequence of multivariate quadratic polynomials. We say the Macaulay matrix of p_{1}, \ldots, p_{m} at degree D is the matrix whose $\binom{n+D}{D}$ collumns correspond to monomials of degree at most D in the variables x_{1}, \ldots, x_{n}, and whose $m\binom{n+D-2}{D-2}$ rows correspond to the polynomials of the form $M p_{i}$, where M is a monomial of degree at most $D-2$ and $i \in\{1, \ldots, m\}$.

Exercise 2. Suppose $p_{1}(x)=\cdots=p_{m}(x)=0$ is a system of quadratic polynomials with a solution $x^{\prime} \in \mathbb{F}_{q}^{n}$. Prove that the Macaulay matrix of p_{1}, \ldots, p_{m} has a vector in its right kernel.

Exercise 3 (Rank of Macaulay matrices of random quadratic polynomials). Let $p_{1}, \ldots, p_{m} \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$ be a sequence of non-zero multivariate quadratic polynomials. Let $\left[p_{1}, \ldots, p_{k}\right]_{\leq d}$ be the vectorspace spanned by all the polynomials of the form $x^{\alpha} p_{i}$, where x^{α} is a monomial of degree at most $d-2$, and where $1 \leq i \leq k$. That is, $\left[p_{1}, \ldots, p_{k}\right]_{\leq d}$ corresponds to the span of the rows of the Macaulay matrix of p_{1}, \ldots, p_{k} at degree D.

Clearly, we have $\left[p_{1}, \ldots, p_{k}\right]_{\leq d-2} \cdot p_{k+1} \subset\left[p_{1}, \ldots, p_{k}\right]_{\leq d} \cap\left[p_{k+1}\right]_{\leq d}$. Suppose that this is an equality for all $k \in\{0, \ldots, m-1\}$ and all d, such that $\left[p_{1}, \ldots, p_{m}\right]_{\leq d} \neq \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]_{\leq d}$. (Random systems satisfy this property with high probability.)

- Prove that $\operatorname{dim}\left(\mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]_{\leq d}\right)$ is equal to the coefficient of t^{d} in the power series expansion of

$$
\frac{1}{(1-t)^{n+1}} .
$$

- Prove that $\operatorname{dim}\left(\left[p_{1}, \ldots, p_{m}\right]_{\leq d}\right)$ is equal to the coefficient of t^{d} in the power series expansion of

$$
\frac{1-\left(1-t^{2}\right)^{m}}{(1-t)^{n+1}}
$$

for all d such that $\left[p_{1}, \ldots, p_{m}\right]_{\leq d} \neq \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]_{\leq d}$

- Conclude that the Macaulay matrix of p_{1}, \ldots, p_{m} at degree D has full rank if there exists $d \leq D$ such that the coefficient of t^{d} in the power series expansion of

$$
\frac{\left(1-t^{2}\right)^{m}}{(1-t)^{n+1}}
$$

has a non-positive coefficient.

XL algorithm. If $p_{1}(x)=\cdots=p_{m}(x)=0$ is a random system with a solution, then heuristically, the ranks of Macaulay matrices of this system are the same as those in Exercise 3, except that when the Macaulay matrix from Exercise 3 has full rank, the Macaulay matrix of a system with a solution has corank 1 instead. The XL algorithm works by constructing the Macaulay matrix at a degree D that is high enough such that the Macaulay matrix has a kernel of rank 1. Then the algorithm does linear algebra to find the vector from Exercise 2, from which the solution x can be recovered easily.

A naive implementation of Gaussian Elimination would require $O\left(\binom{n+D}{D}^{3}\right)$ multiplications. But the Macaulay matrix is very sparse (each row has at most $\binom{n+2}{2}$ non-zero entries), so with sparse linear algebra methods the kernel vector can be found with roughly

$$
\begin{equation*}
3\binom{n+2}{2}\binom{n+D}{D}^{2} \tag{1}
\end{equation*}
$$

multiplications instead.
It is often beneficial to guess the values of a few variables before applying the XL algorithm. This reduces the number of variables, which often allows the algorithm to run at a lower degree D, which makes it much more efficient. The drawback is that if you make k guesses, the algorithm needs to be repeated roughly q^{k} times, so guessing k variables is beneficial if the cost of the XL algorithm is reduced by more than a factor q^{k}. This variant of the XL algorithm is often called HybridXL, because it is a hybrid between XL $(k=0)$ and exhaustive search $(k=n)$.
Exercise 4 (Estimate the cost of solving the MQ problem). We estimate the cost of solving some multivariate quadratic systems, to illustrate the fact that finding a solution becomes much easier if more equations are given. Use Exercise 3 to find D, and use formula (1) for the cost of the linear algebra.

- Let $\mathcal{P}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{m}$, be a random quadratic map with $n=40$ and $m=80$, and $q=256$. Give an estimate of the cost (number of field multiplications) of the XL algorithm to find \mathbf{x}, given $\mathcal{P}(\mathbf{x})$.
- Let $\mathcal{P}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{m}$, be a random quadratic map with $n=40$ and $m=40$, and $q=256$. Find the optimal number of guesses for the HybridXL algorithm, and estimate the cost of running the algorithm.

You might want to use a computer algebra system for your calculations.

Excercise session 2: Breaking a simplified version of the Matsumoto-Imai scheme.

Let $K=\mathbb{F}_{q}$ be a finite field of order q, and let L be a field extension of degree n. Let θ be an integer such that $\operatorname{gcd}\left(1+q^{\theta}, q^{n}-1\right)=1$.
Exercise 5. Consider the exponentiation map $E_{\theta}: L \rightarrow L: x \mapsto x^{q^{\theta}+1}$. Prove that E_{θ} is a bijection. Give a polynomial-time algorithm that given θ and $y \in L$, outputs $E_{\theta}^{-1}(y) \in L$.

Exercise 6. Let $T: L \rightarrow K^{n}$ and $S: K^{n} \rightarrow L$ be invertible K-linear maps (L is a K-vector space of dimension n). Prove that $F=T \circ E_{\phi} \circ S$ is a multivariate quadratic map.

In 1988, Matsumoto and Imai [8] proposed a variant of the following publickey cryptosystem: Fix public parameters q, n, θ. The private key consists of two randomly chosen invertible linear maps $T: L \rightarrow K^{n}$ and $S: K^{n} \rightarrow L$, the public key is the multivariate map $P: K^{n} \rightarrow K^{n}=T \circ E_{\theta} \circ S$. To encrypt a message $m \in K^{n}$, a user just evaluates $P(m)$, which he can send over the wire. Given, T and S, one can efficienly decrypt the ciphertext $P(m)=T \circ E_{\theta} \circ S(m)$ by first undoing T, then undoing E_{θ}, and finally undoing S.

Exercise 7. Show that the Matsumoto-Imai scheme is not secure with the parameters $q=256, n=41, \theta=1$. That is, give an efficient algorithm that given a public key $P: K^{n} \rightarrow K^{n}$, and a ciphertext $c=P(m) \in K^{n}$ outputs the message $m \in K^{n}$.

Hint 1: We saw that the relation $y=x^{q^{\theta}+1}$ (over L) becomes quadratic when viewed over K, wouldn't it be nice if this implied some other equation that becomes bi-linear in the coefficients of x and y instead?

Hint 2:

- κx Кq хәр!̣s чдоq

'sұuә!̣甲џәоз әчң

Exercise 8. Implement your attack in SAGE. Download a public key and ciphertext and a SAGE file to get you started, and recover the message.

Some solutions

Exercise 1. Random multivariate quadratic maps $\mathcal{P}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ are not collision resistant! We define the differential $\mathcal{P}^{\prime}(\mathbf{x}, \Delta):=\mathcal{P}(\mathbf{x}+\Delta)-\mathcal{P}(\mathbf{x})-$ $\mathcal{P}(\Delta)+\mathcal{P}(0)$. Observe that this is bi-linear in \mathbf{x} and Δ. If you fix a random
$\Delta \in \mathbb{F}^{n}$, you can solve a linear system to find x such that $\mathcal{P}(\mathrm{x})=\mathcal{P}(\mathrm{x}+\Delta)$, because

$$
\mathcal{P}(\mathrm{x})-\mathcal{P}(\mathrm{x}+\Delta)=\mathcal{P}(\bar{x})-\mathcal{P}^{\prime}(\mathrm{x}, \Delta)-\mathcal{P}(\mathbb{x})-\mathcal{P}(\Delta)+\mathcal{P}(0)=0,
$$

is linear in \mathbf{x}. For each choice of Δ we get a random system of n linear equations in n variables, so it has a solution with large probability. If the system doesn't have a solution, try again with a different choice of Δ.

Exercise 3.

- The dimension of $\mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]_{\leq d}$ is the number of monomials of degree at most d, because these monomials form a basis. The number of monomials is $\binom{n+d}{d}$, which has generating function $(1-t)^{-n-1}$. (See https://en.wikipedia.org/wiki/Stars_and_bars.)
- Proof by induction on m.

Base case $m=1$: The power series evaluates to $\frac{t^{2}}{(1-t)^{n+1}}$, and indeed the vectorspace $\left[p_{1}\right]_{\leq d}$ is generated by all the polynomials $M \cdot p_{1}$. There are $\binom{n+d-2}{d-2}$ of these polynomials, and they are all linearly independent. The generating function of $\binom{n+d-2}{d-2}$ is $\frac{t^{2}}{(1-t)^{n+1}}$.
Induction case: Suppose the statement is true for all m^{\prime} less than $m+1$. For general subspaces A, B we have $\operatorname{dim}(A+B)=\operatorname{dim}(A)+\operatorname{dim}(B)-$ $\operatorname{dim}(A \cap B)$. We apply this to $A=\left[p_{1}, \ldots, p_{m-1}\right]_{\leq d}$ and $B=\left[p_{m}\right]_{\leq d}$. We get
$\operatorname{dim}\left(\left[p_{1}, \ldots, p_{m}\right]_{\leq d}\right)=\operatorname{dim}\left(\left[p_{1}, \ldots, p_{m-1}\right]_{\leq d}\right)+\operatorname{dim}\left(\left[p_{m}\right]_{\leq d}\right)-\operatorname{dim}\left(\left[p_{1}, \ldots, p_{m-1}\right]_{\leq d} \cap\left[p_{m}\right]_{\leq d}\right)$.
Multiplication by p_{m} is injective, so $\operatorname{dim}\left(\left[p_{1}, \ldots, p_{m-1}\right]_{\leq d-2} \cdot p_{m}\right)=$ $\operatorname{dim}\left(\left[p_{1}, \ldots, p_{m-1}\right]_{\leq d-2}\right)$. Using our assumption on the intersection we get
$\operatorname{dim}\left(\left[p_{1}, \ldots, p_{m}\right]_{\leq d}\right)=\operatorname{dim}\left(\left[p_{1}, \ldots, p_{m-1}\right]_{\leq d}\right)+\operatorname{dim}\left(\left[p_{m}\right]_{\leq d}\right)-\operatorname{dim}\left(\left[p_{1}, \ldots, p_{m-1}\right]_{\leq d-2}\right)$.
Using the induction hypothesis for $m^{\prime}=1$ and $m^{\prime}=m-1$, this is equal to the coefficient of t^{d} in the power series expansion of

$$
\frac{1}{(1-t)^{n+1}}\left[1-\left(1-t^{2}\right)^{m-1}+1-\left(1-t^{2}\right)-t^{2}\left(1-\left(1-t^{2}\right)^{m-1}\right)\right]=\frac{1-\left(1-t^{2}\right)^{m}}{(1-t)^{n+1}}
$$

- The rows of the Macaulay matrices at degree D correspond to the generators of $\left[p_{1}, \ldots, p_{m}\right]_{\leq D}$, so rank of the Macaulay matrix is $\operatorname{dim}\left(\left[p_{1}, \ldots, p_{m}\right]_{\leq D}\right)$ equals the number of collumns of the Macaulay matrix $\binom{n+D}{D}$. The power series is valid as long as $\left[p_{1}, \ldots, p_{m}\right]_{\leq d} \neq \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]_{\leq d}$, i.e., as long as the dimension of $\left[p_{1}, \ldots, p_{m}\right]_{\leq D}$ is less than $\binom{n+D}{D}$, which is as long as the coefficient of t^{D} in

$$
\frac{1}{(1-t)^{n+1}}-\frac{1-\left(1-t^{2}\right)^{m}}{(1-t)^{n+1}}=\frac{\left(1-t^{2}\right)^{m}}{(1-t)^{n+1}}
$$

is positive. If the coefficient of some t^{d} is non-positive we must have $\left[p_{1}, \ldots, p_{m}\right]_{\leq d}=\mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]_{\leq d}$, so the Macaulay matrix is full rank at degree d, and all degrees higher than d.

Solution of session 2. We have the equation $x y^{q^{\theta}}-y x^{q^{2 \theta}}=0$ which is bi-linear (over K) in the n coefficients of $x=\sum x_{i} t^{i} \in K[t] / f(t)$ and $y=\sum_{i} y_{i} t^{i}$. Moreover, the coefficients of x are linear in the message m, and the coefficients y is linear in $\mathcal{P}(m)$. So there are some bi-linear equations in m and $\mathcal{P}(m)$. These equations are of the form

$$
\sum_{i, j} \alpha_{i, j} m_{i} \mathcal{P}(m)_{j}
$$

The coefficients $\alpha_{i, j}$ depend on S and T, so they are not known to us as attackers. But we can evaluate \mathcal{P} at many inputs to get many ($m, \mathcal{P}(m)$) pairs. We can plug those in the above equation and solve for the $\alpha_{i, j}$. It turns out there is a $n-1$ dimensional solutions space of $\alpha_{i, j}$, so we obtain $n-1$ linearly independent bilinear equations. To decrypt a ciphertext $c=\mathcal{P}\left(m^{\prime}\right)$, we just plug c into the bilinear equations, and solve for m^{\prime}. There is a one dimensional space of solutions, consisting of m^{\prime} and all the multiples of m^{\prime}. Since q is small we can check which of the q multiples is the correct message by brute force.

You can download a SAGE implementation of this attack here.

Further reading:

Algorithms for solving systems of multivariate equations:

- Polynomial-time algorithm for solving a system witn $n \geq m(m+1)$ variables in m equations in fields of characteristic 2. [7] (section 7.)
- Algorithm that reduces solving a multivariate quadratic system with $n=\omega m$ variables in m equations to solving a system of $m+1-\lfloor\omega\rfloor$ equations and variables. [9]
- Fast exhaustive search. $\left(O\left(\log (n) q^{n}\right)\right.$ instead of naive exhaustive search which has complexity $O\left(m n^{2} q^{n}\right)$) [3]
- Paper discussing an optimized implementation of XL with sparse linear algebra methods. [5]
- Algorithm for solving systems over \mathbb{F}_{2} based on the polynomial method. [6]

Multivariate quadratic signature schemes:

- The Oil and Vinegar algorithm. [7]
- The Rainbow signature scheme and how to break it. [2]
- MQDSS (an MQ signature without trapdoors). [4]
- MAYO: a relatively new MQ signature with very small keys. (Try to break it!) [1]

References

[1] Ward Beullens. MAYO: Practical post-quantum signatures from oil-and-vinegar maps. Cryptology ePrint Archive, Report 2021/1144, 2021. https://eprint.iacr.org/2021/1144.
[2] Ward Beullens. Breaking rainbow takes a weekend on a laptop. Cryptology ePrint Archive, Paper 2022/214, 2022. https://eprint.iacr.org/ 2022/214.
[3] Charles Bouillaguet, Hsieh-Chung Chen, Chen-Mou Cheng, Tung Chou, Ruben Niederhagen, Adi Shamir, and Bo-Yin Yang. Fast exhaustive
search for polynomial systems in \mathbb{F}_{2}. In Stefan Mangard and FrançoisXavier Standaert, editors, CHES 2010, volume 6225 of LNCS, pages 203218, Santa Barbara, CA, USA, August 17-20, 2010. Springer, Heidelberg, Germany.
[4] Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samardjiska, and Peter Schwabe. From 5-pass MQ-based identification to MQbased signatures. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 135-165, Hanoi, Vietnam, December 4-8, 2016. Springer, Heidelberg, Germany.
[5] Chen-Mou Cheng, Tung Chou, Ruben Niederhagen, and Bo-Yin Yang. Solving quadratic equations with XL on parallel architectures. In Emmanuel Prouff and Patrick Schaumont, editors, CHES 2012, volume 7428 of LNCS, pages 356-373, Leuven, Belgium, September 9-12, 2012. Springer, Heidelberg, Germany.
[6] Itai Dinur. Cryptanalytic applications of the polynomial method for solving multivariate equation systems over GF(2). In Anne Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021, Part I, volume 12696 of LNCS, pages 374-403, Zagreb, Croatia, October 17-21, 2021. Springer, Heidelberg, Germany.
[7] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced oil and vinegar signature schemes. In Jacques Stern, editor, EUROCRYPT'99, volume 1592 of $L N C S$, pages 206-222, Prague, Czech Republic, May 2-6, 1999. Springer, Heidelberg, Germany.
[8] Tsutomu Matsumoto and Hideki Imai. Public quadratic polynominaltuples for efficient signature-verification and message-encryption. In C. G. Günther, editor, EUROCRYPT'88, volume 330 of $L N C S$, pages 419-453, Davos, Switzerland, May 25-27, 1988. Springer, Heidelberg, Germany.
[9] Enrico Thomae and Christopher Wolf. Solving underdetermined systems of multivariate quadratic equations revisited. In Marc Fischlin, Johannes Buchmann, and Mark Manulis, editors, PKC 2012, volume 7293 of LNCS, pages 156-171, Darmstadt, Germany, May 21-23, 2012. Springer, Heidelberg, Germany.

