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Excercise session 1

Exercise 1. Are multivariate quadratic maps collision resitant? I.e., given a
random quadratic map P : Fn

q → Fn
q , is it hard to find x,x′ such that x ̸= x′

and P(x) = P(x′)?

Hint:

Supposethereisacollisionx,x′andyouaregiven∆=x−x′,
canyoufindx,x′moreeasily?

Definition 1 (Macaulay matrix). Let p1, . . . , pm ∈ Fq[x1, . . . , xn] be a se-
quence of multivariate quadratic polynomials. We say the Macaulay matrix
of p1, . . . , pm at degree D is the matrix whose

(
n+D
D

)
collumns correspond

to monomials of degree at most D in the variables x1, . . . , xn, and whose
m
(
n+D−2
D−2

)
rows correspond to the polynomials of the form Mpi, where M is

a monomial of degree at most D − 2 and i ∈ {1, . . . ,m}.

Exercise 2. Suppose p1(x) = · · · = pm(x) = 0 is a system of quadratic
polynomials with a solution x′ ∈ Fn

q . Prove that the Macaulay matrix of
p1, . . . , pm has a vector in its right kernel.

Exercise 3 (Rank of Macaulay matrices of random quadratic polynomi-
als). Let p1, . . . , pm ∈ Fq[x1, . . . , xn] be a sequence of non-zero multivariate
quadratic polynomials. Let [p1, . . . , pk]≤d be the vectorspace spanned by all
the polynomials of the form xαpi, where xα is a monomial of degree at most
d − 2, and where 1 ≤ i ≤ k. That is, [p1, . . . , pk]≤d corresponds to the span
of the rows of the Macaulay matrix of p1, . . . , pk at degree D.
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Clearly, we have [p1, . . . , pk]≤d−2 · pk+1 ⊂ [p1, . . . , pk]≤d ∩ [pk+1]≤d. Suppose
that this is an equality for all k ∈ {0, . . . ,m − 1} and all d, such that
[p1, . . . , pm]≤d ̸= Fq[x1, . . . , xn]≤d. (Random systems satisfy this property
with high probability.)

� Prove that dim(Fq[x1, . . . , xn]≤d) is equal to the coefficient of td in the
power series expansion of

1

(1− t)n+1
.

� Prove that dim([p1, . . . , pm]≤d) is equal to the coefficient of td in the
power series expansion of

1− (1− t2)m

(1− t)n+1
,

for all d such that [p1, . . . , pm]≤d ̸= Fq[x1, . . . , xn]≤d

� Conclude that the Macaulay matrix of p1, . . . , pm at degree D has full
rank if there exists d ≤ D such that the coefficient of td in the power
series expansion of

(1− t2)m

(1− t)n+1

has a non-positive coefficient.

XL algorithm. If p1(x) = · · · = pm(x) = 0 is a random system with a
solution, then heuristically, the ranks of Macaulay matrices of this system
are the same as those in Exercise 3, except that when the Macaulay matrix
from Exercise 3 has full rank, the Macaulay matrix of a system with a solution
has corank 1 instead. The XL algorithm works by constructing the Macaulay
matrix at a degree D that is high enough such that the Macaulay matrix has
a kernel of rank 1. Then the algorithm does linear algebra to find the vector
from Exercise 2, from which the solution x can be recovered easily.

A naive implementation of Gaussian Elimination would require O(
(
n+D
D

)3
)

multiplications. But the Macaulay matrix is very sparse (each row has at
most

(
n+2
2

)
non-zero entries), so with sparse linear algebra methods the kernel

vector can be found with roughly

3

(
n+ 2

2

)(
n+D

D

)2

(1)
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multiplications instead.

It is often beneficial to guess the values of a few variables before applying the
XL algorithm. This reduces the number of variables, which often allows the
algorithm to run at a lower degree D, which makes it much more efficient.
The drawback is that if you make k guesses, the algorithm needs to be
repeated roughly qk times, so guessing k variables is beneficial if the cost of
the XL algorithm is reduced by more than a factor qk. This variant of the
XL algorithm is often called HybridXL, because it is a hybrid between XL
(k = 0) and exhaustive search (k = n).

Exercise 4 (Estimate the cost of solving the MQ problem). We estimate
the cost of solving some multivariate quadratic systems, to illustrate the fact
that finding a solution becomes much easier if more equations are given. Use
Exercise 3 to find D, and use formula (1) for the cost of the linear algebra.

� Let P : Fn
q → Fm

q , be a random quadratic map with n = 40 and
m = 80, and q = 256. Give an estimate of the cost (number of field
multiplications) of the XL algorithm to find x, given P(x).

� Let P : Fn
q → Fm

q , be a random quadratic map with n = 40 andm = 40,
and q = 256. Find the optimal number of guesses for the HybridXL
algorithm, and estimate the cost of running the algorithm.

You might want to use a computer algebra system for your calculations.

Answer:

Solvingthefirstsystemtakes2
68

multiplications,theoperating
degreeisD=8.Solvingthesecondalgorithmtakes2

129
multi-

plicationsfork=3guessesandD=18.

Excercise session 2: Breaking a simplified ver-

sion of the Matsumoto-Imai scheme.

Let K = Fq be a finite field of order q, and let L be a field extension of degree
n. Let θ be an integer such that gcd(1 + qθ, qn − 1) = 1.

Exercise 5. Consider the exponentiation map Eθ : L → L : x 7→ xqθ+1.
Prove that Eθ is a bijection. Give a polynomial-time algorithm that given θ
and y ∈ L, outputs E−1

θ (y) ∈ L.
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Exercise 6. Let T : L → Kn and S : Kn → L be invertible K-linear maps
(L is a K-vector space of dimension n). Prove that F = T ◦ Eϕ ◦ S is a
multivariate quadratic map.

In 1988, Matsumoto and Imai [8] proposed a variant of the following public-
key cryptosystem: Fix public parameters q, n, θ. The private key consists of
two randomly chosen invertible linear maps T : L → Kn and S : Kn → L,
the public key is the multivariate map P : Kn → Kn = T ◦ Eθ ◦ S. To
encrypt a message m ∈ Kn, a user just evaluates P (m), which he can send
over the wire. Given, T and S, one can efficienly decrypt the ciphertext
P (m) = T ◦ Eθ ◦ S(m) by first undoing T , then undoing Eθ, and finally
undoing S.

Exercise 7. Show that the Matsumoto-Imai scheme is not secure with the
parameters q = 256, n = 41, θ = 1. That is, give an efficient algorithm that
given a public key P : Kn → Kn, and a ciphertext c = P (m) ∈ Kn outputs
the message m ∈ Kn.

Hint 1: We saw that the relation y = xqθ+1 (over L) becomes quadratic when
viewed over K, wouldn’t it be nice if this implied some other equation that
becomes bi-linear in the coefficients of x and y instead?

Hint 2:

Raisebothsidesoftheequationtothepowerq
θ
−1andmultiply

bothsidexbyxy.

Hint 3:

Ifyouknowthatinput-outputpairsofthecryptosystemsatisfy
somepolynomialequationswith(nottoomany)unknowncoeffi-
cients,youcanjustevaluatePonalotofinputs,andsolvefor
thecoefficients.

Exercise 8. Implement your attack in SAGE. Download a public key and
ciphertext and a SAGE file to get you started, and recover the message.

Some solutions

Exercise 1. Random multivariate quadratic maps P : Fn → Fn are not
collision resistant! We define the differential P ′(x,∆) := P(x+∆)−P(x)−
P(∆) +P(0). Observe that this is bi-linear in x and ∆. If you fix a random
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∆ ∈ Fn, you can solve a linear system to find x such that P(x) = P(x+∆),
because

P(x)− P(x+∆) =�
��P(x)− P ′(x,∆)−�

��P(x)− P(∆) + P(0) = 0 ,

is linear in x. For each choice of ∆ we get a random system of n linear
equations in n variables, so it has a solution with large probability. If the
system doesn’t have a solution, try again with a different choice of ∆.

Exercise 3.

� The dimension of Fq[x1, . . . , xn]≤d is the number of monomials of degree
at most d, because these monomials form a basis. The number of
monomials is

(
n+d
d

)
, which has generating function (1 − t)−n−1. (See

https://en.wikipedia.org/wiki/Stars_and_bars.)

� Proof by induction on m.

Base case m = 1: The power series evaluates to t2

(1−t)n+1 , and indeed

the vectorspace [p1]≤d is generated by all the polynomials M ·p1. There
are

(
n+d−2
d−2

)
of these polynomials, and they are all linearly independent.

The generating function of
(
n+d−2
d−2

)
is t2

(1−t)n+1 .

Induction case: Suppose the statement is true for all m′ less than m+1.
For general subspaces A,B we have dim(A+B) = dim(A)+dim(B)−
dim(A ∩ B). We apply this to A = [p1, . . . , pm−1]≤d and B = [pm]≤d.
We get

dim([p1, . . . , pm]≤d) = dim([p1, . . . , pm−1]≤d)+dim([pm]≤d)−dim([p1, . . . , pm−1]≤d∩[pm]≤d) .

Multiplication by pm is injective, so dim([p1, . . . , pm−1]≤d−2 · pm) =
dim([p1, . . . , pm−1]≤d−2). Using our assumption on the intersection we
get

dim([p1, . . . , pm]≤d) = dim([p1, . . . , pm−1]≤d)+dim([pm]≤d)−dim([p1, . . . , pm−1]≤d−2) .

Using the induction hypothesis for m′ = 1 and m′ = m − 1, this is
equal to the coefficient of td in the power series expansion of

1

(1− t)n+1

[
1− (1− t2)m−1 + 1− (1− t2)− t2(1− (1− t2)m−1)

]
=

1− (1− t2)m

(1− t)n+1
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� The rows of the Macaulay matrices at degreeD correspond to the gener-
ators of [p1, . . . , pm]≤D, so rank of the Macaulay matrix is dim([p1, . . . , pm]≤D)
equals the number of collumns of the Macaulay matrix

(
n+D
D

)
. The

power series is valid as long as [p1, . . . , pm]≤d ̸= Fq[x1, . . . , xn]≤d, i.e., as
long as the dimension of [p1, . . . , pm]≤D is less than

(
n+D
D

)
, which is as

long as the coefficient of tD in

1

(1− t)n+1
− 1− (1− t2)m

(1− t)n+1
=

(1− t2)m

(1− t)n+1

is positive. If the coefficient of some td is non-positive we must have
[p1, . . . , pm]≤d = Fq[x1, . . . , xn]≤d, so the Macaulay matrix is full rank
at degree d, and all degrees higher than d.

Solution of session 2. We have the equation xyq
θ − yxq2θ = 0 which

is bi-linear (over K) in the n coefficients of x =
∑

xit
i ∈ K[t]/f(t) and

y =
∑

i yit
i. Moreover, the coefficients of x are linear in the message m, and

the coefficients y is linear in P(m). So there are some bi-linear equations in
m and P(m). These equations are of the form∑

i,j

αi,jmiP(m)j .

The coefficients αi,j depend on S and T , so they are not known to us as
attackers. But we can evaluate P at many inputs to get many (m,P(m))
pairs. We can plug those in the above equation and solve for the αi,j. It turns
out there is a n − 1 dimensional solutions space of αi,j, so we obtain n − 1
linearly independent bilinear equations. To decrypt a ciphertext c = P(m′),
we just plug c into the bilinear equations, and solve for m′. There is a one
dimensional space of solutions, consisting of m′ and all the multiples of m′.
Since q is small we can check which of the q multiples is the correct message
by brute force.

You can download a SAGE implementation of this attack here.

Further reading:

Algorithms for solving systems of multivariate equations:
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� Polynomial-time algorithm for solving a system witn n ≥ m(m + 1)
variables in m equations in fields of characteristic 2. [7] (section 7.)

� Algorithm that reduces solving a multivariate quadratic system with
n = ωm variables in m equations to solving a system of m + 1 − ⌊ω⌋
equations and variables. [9]

� Fast exhaustive search. (O(log(n)qn) instead of naive exhaustive search
which has complexity O(mn2qn)) [3]

� Paper discussing an optimized implementation of XL with sparse linear
algebra methods. [5]

� Algorithm for solving systems over F2 based on the polynomial method.
[6]

Multivariate quadratic signature schemes:

� The Oil and Vinegar algorithm. [7]

� The Rainbow signature scheme and how to break it. [2]

� MQDSS (an MQ signature without trapdoors). [4]

� MAYO: a relatively new MQ signature with very small keys. (Try to
break it!) [1]
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