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TUTORIAL 2

1 Hashing with SIS (??)

The objective of this exercise is to study a construction of a collision resistant hash function based on SIS.

Let F be a family of functions from a set X to a set Y (which we will call “hash functions”, but really they are just
functions) and let DF be a distribution over this set of functions.

Definition: The advantage of a probabilistic polynomial time (p.p.t.) algorithm A against the collision resistance of
the family of hash functions (F,DF ) is defined as

AdvF (A) := Pr
f←DF

(
A(f) = (x, x′) ∈ X2 with f(x) = f(x′) and x 6= x′

)
,

where the probability is taken over the random choice of f and the internal randomness of A.

Recall also the SIS problem, which is as follows.

Definition: Let q,m, n be integers with m ≥ n and B > 0 be some bound. The advantage of a p.p.t. adversary A
against the SISq,n,m,B problem is defined as

AdvSIS(A) := Pr
A←U(Zm×n

q )

(
A(A) = x ∈ Zm with xT ·A = 0 mod q and 0 < ‖x‖ ≤ B

)
,

where the probability is over the random choice of A and the internal randomness of A.

We will consider the following family F of functions, from {0, 1}m to Zn
q . The functions of F are indexed by a

matrix A ∈ Zm×n
q and are defined as

fA : {0, 1}m → Zn
q

x 7→ xT ·A

The distribution DF over F is obtained by sampling A ∈ Zm×n
q uniformly at random and outputting fA.

1. Assume that B ≥
√
m. Show that if there exists an adversary A against the collision resistance of (F,DF ) with

advantage ε > 0, then there exists an adversary B against the SISq,n,m,B problem with advantage ≥ ε. This
proves that (F,DF ) is a family of collision resistant functions, provided that the SIS problem is hard.

A: Let us assume that there is an adversary A as in the question and construct an adversary B against SIS. The algorithm
B gets as input some uniformly random matrix A ∈ Zm×n

q . It sends to A the function fA. The adversary A outputs a pair
(x, x′) ∈ {0, 1}m × {0, 1}m and B finally outputs the element z = x− x′.
Observe first that the view of A is exactly the same as in the true collision-resistant game. Hence, the probability that A
outputs x, x′ ∈ {0, 1}m with x 6= x′ and fA(x) = fA(x′) is AdvF (A) = ε.

The second observation is that when A succeeds in finding a collision, then B succeeds in computing a solution to SIS.
Indeed, since xT · A = fA(x) = fA(x′) = (x′)T · A (all equalities are modulo q), we have zT · A = 0 mod q. Moreover,
since x 6= x′, then z 6= 0. Finally, since x and x′ have coefficients in {0, 1}, then z = x− x′ has coefficients in {−1, 0, 1}.
Hence, we have ‖z‖ ≤

√
m ≤ B, where the last inequality comes from the assumption in the question. We conclude that

z is a solution to SIS with parameters q,m, n and B, and the success probability of B is at least the same as the one of A,
i.e., ε.



2 QR-factorization (??)

The objective of this exercise is to define the QR factorization of a matrix and prove useful properties of this
decomposition, which will be used in exercise 3.

In this exercise, we admit the following result:
Lemma: There exists a polynomial time algorithm that takes as input any matrix B ∈ GLn(R), and outputs two
matrices Q,R ∈ GLn(R) such that

• B = Q ·R;

• Q is orthonormal, i.e., Q−1 = QT ;

• R is upper triangular and has non negative diagonal coefficients.

The pair (Q,R) is called a QR-factorization of the matrix B. We will see below that it is unique. In the rest of this
exercise sheet, it might be useful to remember that an orthonormal matrix Q has the following properties:

• all the rows and columns of the matrix Q have euclidean norm 1;

• the rows (resp. columns) of Q are orthogonal;

• for any vector v it holds that ‖Qv‖ = ‖v‖.

1. Let B ∈ GLn(R). Show that the QR-factorization of B is unique (i.e., show that if B = QR = Q′R′ with Q,Q′

orthonormal and R,R′ upper triangular with positive diagonal coefficients, then Q = Q′ and R = R′) (??)

A: Let Q,Q′, and R,R′ be as in the question and such that QR = Q′R′. Rewriting the equality, we have Q̃ = R̃, where
Q̃ = (Q′)−1 ·Q and R̃ = R′ ·R−1.

Observe that the set of orthonormal matrices is stable by inversion and multiplication. Hence Q̃ is orthonormal. Similarly,
the set of upper triangular matrices with positive diagonal coefficients is stable by inversion and multiplication, hence R̃ is
upper triangular with positive diagonal coefficients.

We will show that the intersection of the set of orthonormal matrices with the set of upper triangular matrices with positive
diagonal coefficients only contains In, which will prove the equality Q = Q′ and R = R′.

Let Q̃ = R̃ be a matrix which is both orthonormal and upper-triangular with positive diagonal coefficients. Then
R̃T = Q̃T = Q̃−1 = R̃−1, where we used the fact that the transpose of an orthonormal matrix is its inverse. But
since R̃ is upper triangular, we know that its inverse is also upper-triangular and its transpose is lower-triangular. Since
both are equal, the matrix must be diagonal.

Let us now prove that the diagonal coefficients are all equal to 1. This comes from the fact that the euclidean norm of every
column of an orthonormal matrix is 1. Since this norm is equal to the absolute value of the diagonal coefficient (which
is the only non-zero coefficient in each column), this coefficient must be ±1. Using the fact that R̃ has positive diagonal
coefficients, we conclude that they must be all 1.

We say that a basis B of a lattice is size-reduced if its QR-factorization (Q,R) satisfies the following property:
for all j ≥ i, |ri,j | ≤ ri,i (remember that ri,i > 0). In other words, the diagonal coefficients of R are the largest
coefficients of their rows (in absolute value).

2. Let B ∈ GLn(R) and (Q,R) be its QR-factorization. Show that there exists an efficiently computable
unimodular matrix U such that B · U is size-reduced and has QR-factorization (Q,R′) with r′i,i = ri,i for
all i. (??)
(You do not have to describe the algorithm very properly, getting the idea is sufficient.)
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A: This transformation, which consist in reducing the non-diagonal coefficients modulo the diagonal coefficients is a very
common operation performed on lattices bases (for instance in the LLL algorithm). It is usually called size-reduction. It
allows in particular to avoid the explosion of the size of the coefficients during the execution of multiple algorithms.

This transformation is done on the columns of R by operations like Cj ← Cj + bri,j/ri,ieCi for all j ≥ i. This reduces the
non-diagonal coefficients modulo the diagonal coefficients, hence it ensures that all the coefficients on a row are smaller (in
absolute value) than the diagonal coefficient ri,i. These operations are unimodular since they can be inverted by performing
only integer operations, and they preserve the diagonal coefficients, as desired. (One needs to perform these operations in
an appropriate order, otherwise reduced coefficients might be increased again afterwards, but this is doable).

In the rest of this exercise sheet, we call size reduce the polynomial time algorithm that takes as input a
matrix B and returns a sized-reduced matrix B′ := B · U as in the above question, i.e., with ri,i = r′i,i and
L(B′) = L(B).

3. Let B ∈ GLn(R) and (Q,R) be its QR-factorization. Let bj be the column vectors of B. Show that
maxj rj,j ≤ maxj ‖bj‖. If B is size-reduced, show that we also have the inequality maxj ‖bj‖ ≤

√
n ·maxj rj,j

(in other words, the size of the diagonal coefficients of R are a relatively good approximation of the size of the
vectors of B when B is size-reduced). (??)
(Hint 1: observe that bj = Q · rj with rj the j-th column of R)
(Hint 2: remember the property that ‖Qv‖ = ‖v‖ for any vector v)

A: Let us first show that maxj rj,j ≤ maxj ‖bj‖. We will actually show the stronger property rj,j ≤ ‖bj‖ for all j’s.
Fix some column index j. Since B = Q · R, then bj = Q · rj , where rj is the j-th column of R. Moreover, since Q is
orthonormal, then ‖bj‖ = ‖rj‖. Finally, note that ‖rj‖ ≤ |rj,j | = rj,j (since the diagonal coefficients are positive), which
concludes the proof of the first inequality.

For the second inequality, we use again the fact that ‖bj‖ = ‖rj‖. A closer look at rj shows that ‖rj‖ ≤
√
j·maxi≤j |ri,j | ≤√

n · maxi≤j ri,i (in the last inequality we used the fact that the basis is size-reduced). From this, we conclude that
‖bj‖ = ‖rj‖ ≤

√
n ·maxi ri,i as desired.

3 Computing a short basis from a short generating set (??)

The objective of this exercise is to show that given an arbitrary basisB of a latticeL and a set of n linearly independent
(short) vectors S in L, then one can create a new basis B̃ of L with vectors of length not much larger than the ones
of S. In other words, finding short linearly independent vectors in L is sufficient to obtain a short basis of L.
This exercise uses results from exercise 2.

1. Let B be a basis of a lattice L and S ∈ GLn(R) be a set of n linearly independent vectors in L. Make sure you
remember why there exists an integer matrix X such that S = B ·X . Is X unimodular?

A: Every column vector of S belongs to L, hence is an integer linear combination of the columns of B. Hence S = B ·X
with X integer. The matrix X is unimodular (i.e., has an integral inverse) if and only if S is a basis of L (which might not
be the case here).

2. Let Y be the HNF basis of the lattice L(XT ) and let U be the unimodular matrix such that XT = Y · U . Verify
that B′ = B · UT is a basis of L and that S = B′ · Y T .

A: Since U is unimodular, then so is UT (it has integer coefficients and determinant ±1). Hence, B′ is indeed a basis of L.
Moreover, since S = B ·X and X = UT · Y T , then we indeed have S = (B · UT ) · Y T as desired.

3. Let S = QS · RS be the QR factorization of the matrix S and B′ = QB · RB be the one of B′. Show that
QS = QB and that RS = RB · Y T .
(Hint: use the unicity of the QR-factorization that you proved in exercise 2)

Page 3



A: From the equality S = B′ · Y T , we have QSRS = QB · (RB · Y T ). Note that Y is lower triangular with positive
diagonal coefficients (since it is an HNF basis), hence Y T is upper triangular with positive diagonal coefficients, and so is
(RB · Y T ). We conclude by using the unicity of the QR decomposition which we proved in question 1.

Let B̃ = size reduce(B′). Our objective is to show that B̃ is a basis of L(B) which has vectors almost as
short as the ones of S. (You can check from the way we defined it that B̃ can be computed in polynomial time
from B and S).

4. Let (Q̃, R̃) be the QR-factorization of B̃. Show that maxj r̃j,j ≤ maxj ‖sj‖.
(Hint 1: remember from question 2 in exercise 2 that r̃j,j = (RB)j,j when we use the size-reduction algorithm)
(Hint 2: observe that the triangular matrix Y is integral and has positive diagonal coefficients, hence its diagonal
coefficients are ≥ 1.)

A: Since r̃j,j = (RB)j,j , it suffices to prove that maxj(RB)j,j ≤ maxj ‖sj‖.
We have seen in the previous question that RS = RB · Y T . Since all those matrices are upper triangular, then the diagonal
coefficients satisfy (RS)j,j = (RB)j,j · (Y T )j,j for all j’s. But Y T is an integer matrix, hence its diagonal coefficients are
≥ 1. And we conclude that (RB)j,j ≤ (RS)j,j (recall that all those diagonal coefficients are positive).

Finally, we use question 3 to conclude that (RS)j,j ≤ maxj ‖sj‖.

5. Conclude that B̃ is a new basis of L with columns vectors b̃j satisfying maxj ‖b̃j‖ ≤
√
n ·maxj ‖sj‖. In other

words, the vectors of B̃ are almost as short as the linearly independent vectors from S.
(Hint: this question consists mainly in combining what you have seen in this exercise and in exercise 2.)

A: From the definition of B̃ and B′, one can check that L(B̃) = L(B′) = L(B). Let us now show that maxj ‖b̃j‖ ≤
√
n ·

maxj ‖sj‖. Using question 3 from exercise 2 and the fact that B̃ is size reduced, we see that maxj ‖b̃j‖ ≤
√
n ·maxj r̃j,j .

From there, we conclude using the previous question.

4 Ideal lattices (??)

LetR be the ring Z[X]/(Xd +1) where d is a power-of-two (so thatXd +1 is irreducible, andK = Q[X]/(Xd +1)
is a field). An ideal in R is a subset I of R such that for all x, y ∈ I , the sum x + y is also in I , and for any x ∈ I
and α ∈ R, the product x · α is in I .

1. Recall that the coefficient embedding

Σ : K → Qd

a =

d−1∑
i=0

aiX
i 7→ (a0, · · · , ad−1)

maps elements of K to vectors in Qd (and elements of R to vectors in Zd). Show that if a ∈ K is non-zero, then
the d vectors Σ(a ·Xi) for i = 0 to d− 1 are linearly independent. (??)
(Hint 1: assume you have a Q-linear relation

∑d−1
i=0 yi · Σ(a ·Xi) = 0 with the yi’s in Q and not all zero and

try to obtain a contradiction.)
(Hint 2: Σ is a Q-morphism and is a bijection between K and Qd. Also, K is a field so all non-zero elements
are invertible.)

A: Assume by contradiction that the vectors vi = Σ(a ·Xi) are not linearly independent. Since Q is a field containing the
vi’s, then there must exist a relation involving the vi’s with coefficients in Q, i.e., there exist y0, · · · , yd−1 ∈ Q not all zero
such that

∑
i yi · vi = 0.

Page 4



Note that Σ is an additive isomorphism between K = Q[X]/(Xd + 1) and Qd. Hence, applying Σ−1 to the previous
equality yields

∑
i yi · a ·Xi = 0, i.e., a ·

(∑
i yi ·Xi

)
= 0 (here the operations are performed in K = Q[X]/(Xd + 1),

i.e., modulo Xd + 1). Let us write y =
∑

i yi ·Xi ∈ K. Since K is a field and a · y = 0, then either a = 0 or y = 0. We
assumed that a was non-zero, hence y must be zero. But again, because Σ is an isomorphism, this implies that the yi’s are
all 0, which is a contradiction. This shows that the vectors vi’s are indeed linearly independent.

Remember that during the lecture, we have seen that a principal ideal is an ideal of rank d once embedded into
Qd via the canonical embedding. The objective of the next question is to show that this is true for all ideals (not
only the principal ideals).

2. Show that for any non-zero ideal I , the set Σ(I) is a lattice of rank d in Rd. (??)

A: We use the equivalent definition of a lattice from tutorial 1. First, observe that Σ(I) is indeed stable by addition and
subtraction (since I is and Σ is an additive morphism). Then, we see that Σ(I) is discrete since it is included in Zd. Finally,
let us exhibit d linearly independent vectors in Σ(I). Since I is non-zero, it must contain a non-zero element a ∈ I .
Moreover, since I is an ideal and Xi ∈ R for all i ≥ 0, then the elements a ·Xi are in I , i.e., the vectors Σ(a ·Xi) are in
Σ(I). We have seen in the previous question that for i = 0 to d−1, those vectors are linearly independent, which concludes
the proof.

3. Let I be an ideal of R and s ∈ I be a non-zero element of I . Show that one can efficiently construct d
elements si (for 1 ≤ i ≤ d) in I such that the vectors Σ(si) are linearly independent and have euclidean norm
‖Σ(si)‖ = ‖Σ(s)‖. (??)

A: Let us again take si = s ·Xi−1 for i = 1 to d. Those elements are in I since I is an ideal. Moreover, by definition of
R, one can see that if s =

∑d−1
j=0 xjX

j , then

si+1 = s ·Xi =

d−1∑
j=0

xj ·Xi+j =

d−1∑
k=i

xk−iX
k −

i−1∑
k=0

xk+d−iX
k,

(here, we use the fact that X` = −X`−d in R for d ≤ ` < 2d). From this, one can see that Σ(si) is obtain by permuting
the coefficients of Σ(s), and multiplying some of them by −1. This does not change the euclidean norm, i.e., we have
‖Σ(si)‖ = ‖Σ(s)‖ for all i’s.

4. Conclude that in an ideal lattice Σ(I), finding one short vector v ∈ Σ(I) is sufficient to construct a short basis
B of Σ(I) where all vectors bi of B have euclidean norm at most

√
d · ‖v‖.

(Hint: you may want to use the result of question 5 from exercise 3)

A: This is done by combining the previous question with exercise 3. Using the previous question, we construct d linearly
independent vectors in Σ(I) with the same euclidean norm as v. Then, using exercise 3, we use this set of short linearly
independent vectors to create a short basis of I , with a loss of a factor

√
d on the size of the vectors.

Note: in this exercise, we used special properties of the ring R. In more generality, from one short vector
v ∈ Σ(I), one can construct a short basis with vectors of norm at most γK · ‖v‖ for some γK depending on the
number fields K. For most number fields K used in cryptography, this quantity γK is small (and so the intuition
that “one short vector in an ideal is sufficient to have a short basis” is true).
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