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TUTORIAL 1

1 Equivalent definition

Recall that we defined a lattice L in Rn as a set of the form {
∑n

i=1 xibi |x1, · · · , xn ∈ Z}, where the vectors (bi)i
are n linearly independent vectors in Rn and are called a basis of L. This definition actually defines what we usually
call “full rank lattices”, i.e., lattices generated by n linearly independent vectors in a space of dimension n, as op-
posed to those generated by n linearly independent vectors in a space of dimension m > n. In the lectures and the
tutorials, we will assume that the lattices are always full rank (and will omit to say so).

In the rest of this exercise sheet, we will admit the following result:

Lemma: L ⊂ Rn is a lattice if and only if the three following conditions hold

1. L is closed under addition and subtraction (i.e., L is an additive subgroup of Rn);

2. L is discrete (i.e., there exists some c > 0 such that for any x, y ∈ L, we have ‖x− y‖ ≥ c);

3. L contains n linearly independent vectors.

2 Lattice bases (?)

The objective of this exercise is to prove a bunch of properties regarding bases of lattices. Throughout this exercise,
the matrix B (or the matrices B1, B2) are invertible matrices in GLn(R) for some dimension n > 0. Recall that we
write L(B) for the lattice spanned by the columns of the matrix B.

1. Let B1, B2 ∈ GLn(R). Show that L(B1) = L(B2) if and only if B1 = B2 · U for some U ∈ Zn×n such that
det(U) = ±1. Such a matrix U is called unimodular. It is an invertible integer matrix whose inverse is also an
integer matrix.

A: Assume first that L(B1) = L(B2). Then, every column of B1 belongs to L(B1) = L(B2). Hence, by definition of the
lattice L(B2) (integer linear combinations of the columns of B2), we know that there exists an integer square matrix U1

such that B1 = B2 · U1. Since B1 and B2 are both invertible, then U1 is also invertible (over R). Our objective is to show
that U1 is invertible over Z (i.e., it’s inverse is also an integer matrix). By a similar argument, we know that there exist an
invertible (over R) integer matrix U2 such that B2 = B1 · U2.

Combining both equations, we obtain B1 = B2 · U1 = B1 · U2 · U1. Since B1 is invertible, we can simplify this into
In = U2 · U1. Since U1 and U2 are invertible over R, their inverse is unique and we conclude that U−11 = U2 is an integer
matrix as desired.

To conclude, observe that since U1 and U2 are integer matrices, then their determinant is also an integer. But we have
1 = det(In) = det(U1 · U2) = det(U1) · det(U2). Hence, the only possibility for det(U1) is 1 or −1 (these are the only
invertible elements in Z).

In the other direction, assume that B1 = B2 · U with U integer and det(U) = ±1. Then, U is invertible over R and its
inverse matrix U−1 has integer coefficients (recall that U−1 = 1/ det(U) · adj(U) where the adjugate matrix adj(U) is
integral since U is).

Since U is integral, then by definition every column of B1 = B2 · U is in the lattice spanned by B2. Hence we have
L(B1) ⊆ L(B2). Since U−1 is also integral, then every column of B2 = B1 · U−1 is in the lattice spanned by B1, and we
conclude that L(B2) ⊆ L(B1).
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2. Let B1 and B2 be two bases of the same lattice L. Prove that | det(B1)| = |det(B2)|.
This shows that the quantity |det(B)| does not depend on the choice of the basis B of L, but only on the lattice
L. It is usually called the volume or the determinant of the lattice L, and written vol(L) or det(L).

A: We have seen in the previous questions that if L(B1) = L(B2), thenB1 = B2 ·U for some matrix U with det(U) = ±1.
Taking the absolute value of the determinant of this equation proves that |det(B1)| = |det(B2)|.

3. Let L1 and L2 be two lattices of rank n. Show that if L1 ⊆ L2, then det(L1) = k · det(L2) for some integer
k > 0. This integer k is called the index of L1 inside L2 and is written [L2 : L1].

A: Let B1 be a basis of L1 and B2 be a basis of L2. Since L1 ⊆ L2, then every column of B1 is in L(B2), i.e., there
is an integer matrix X such that B1 = B2 · X . Taking the determinant, we have det(B1) = det(B2) · det(X). Hence,
k = |det(X)| and k is indeed an integer since X has integer coefficients (and k is non-zero since B1 and B2 are both
invertible).

The determinant of a lattice is an important quantity, mostly useful in cryptography thanks to Minkowski’s first
theorem. This theorem states that in any lattice L of dimension n, there exists a non-zero vector v ∈ L such that
‖v‖ ≤

√
n · det(L)1/n.

4. Show that the upper bound in Minkowski’s first theorem can be quite loose for some lattices: construct a lattice
with det(L) = 1 and which contains a non-zero vector v whose euclidean norm is arbitrarily close to 0.

A: Take ε > 0 and define L to be the lattice with basis b1 = (ε, 0)T and b2 = (0, ε−1)T . Then det(L) = 1 but L contains
the vector b1 whose norm can be arbitrarily close to 0.

The objective of the next questions is to observe that when dealing with lattices, a maximal set of independent
vectors is not always a basis, and a minimal set of generating vectors is also not always a basis (which differs
from what we are used to in vector spaces).

5. Exhibit a family of n linearly independent vectors in Zn which do not form a Z-basis of Zn.

A: One example is the family bi = (0, . . . , 0, 2, 0, . . . , 0) with a 2 in i-th position, for i = 1 to n. Those vectors are linearly
independent but they generate the lattice (2Z)n, which is included strictly in Zn. Note that one cannot add a vector to
this family of vectors and still have independent vectors (because independence is defined over R, where things work as
expected: the maximal size of an independent set of vectors in Rn is n).

6. Exhibit a family of n+ 1 vectors generating Zn such that it is not possible to remove any vector from this set to
obtain a Z-basis of Zn.

A: Take b0 = (2, 0, . . . , 0), b1 = (3, 0, . . . , 0) and bi = (0, . . . , 0, 1, 0, . . . , 0) with a i at the i-th position for i = 2 to n.
Then (bi)0≤i≤n generates Zn. This is because 2 and 3 are coprime, hence one can find an integer linear combination of b1
and b2 with a 1 in its first coordinate (just take b1 − b0 = (1, 0, . . . , 0)).

However, one can check that removing b0 or b1 from the list of generator does not generate Zn anymore: the first coordinate
will always be a multiple of 2 or 3. Similarly, we cannot remove one of the bi for i ≥ 2 since the i-th coordinate would
always be 0.

7. Compute a basis for the lattice generated by c1 = (2π, 4)T , c2 = (0, 3)T and c3 = (4π, 4)T . Same question for
c1 = (1, 0)T , c2 = (1, 1)T and c3 = (1, π)T . (??)
(Hint: the question might be lying to you. In this case, show what is wrong in the question. :) ).
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A: A basis for the first lattice is given by b1 = (2π, 0)T and b2 = (0, 1)T . A way to check that this is indeed a basis of the
lattice generated by c1, c2 and c3 is to check that each of the bi is in the Z-span of the ci-s (note: b2 = 2c1 − c3 − c2 and
b1 = c1− 4b2) and that reciprocally each of the ci is in the Z-span of the bi’s. This shows that the bi an the ci generates the
same lattice. Then observe that the bi are 2 linearly independent vectors in R2 hence they form a basis of their lattice.

For the second example, it turns out that the Z-span of c1, c2 and c3 is not a lattice. A way to see this is that a lattice must be
discrete (see the alternative definition in Section 1). But the Z-span of c1, c2 and c3 is not discrete. Indeed, we have (0, 1)T

and (0, π)T in the Z-span. Since π is not a rational number, we can create a vector (0, ε)T with ε as small as we want
by taking integer linear combinations of those two vectors. This shows that the Z-span of the ci contains an accumulation
point at 0, and so it is not a lattice.

3 HNF basis (??)

In this exercise, we will see how to compute the HNF basis of a lattice L. The algorithm to compute the HNF basis
is very similar to the way one would use Gaussian elimination to compute the echelon form of matrices over a field.
The main difference is that since we are only allowed to perform integer linear combinations over the vectors of our
basis, we cannot multiply by the inverse of a coefficient, in order to annihilate the other coefficients on the same row.

1. Let’s review Gaussian elimination a little. Run Gaussian elimination (over R) on the columns of the matrix

M =

(
2 3
3 4

)
in order to obtain a triangular matrix of the form

(
∗ 0
∗ ∗

)
. (Here, running Gaussian elimination

on the columns means that you are only allowed to perform operations on the columns of the matrix. Said
differently, you can only multiply M by invertible matrices on the right).

A: In order to obtain a 0 on the top-right part of the matrix, we perform the operation C2 ← C2 − 3/2 · C1 (where C1 and

C2 are the columns of the matrix M ). This corresponds to multiplication on the right by the matrix
(

1 −3/2
0 1

)
. We then

obtain the matrix
(

2 0
3 −1/2

)
, which has the desired shape.

2. In the previous question, the operations we performed on the columns were not integer. We now want to focus
on integer operations on the columns of M . Show that there exists an integer matrix U with determinant 1 such

that M · U =

(
1 ∗
∗ ∗

)
.

A: The matrix U =

(
−1 0
1 −1

)
has integral coefficient, determinant 1 and satisfies M · U =

(
2 3
3 4

)
·
(
−1 0
1 −1

)
=(

1 −3
1 −4

)
as desired.

3. More generally, show that for any matrix M =

(
a b
c d

)
there is a unimodular matrix U such that M · U =(

gcd(a, b) ∗
∗ ∗

)
. (??)

A: We know by Bézout’s identity that there exists u, v integers such that au+ bv = gcd(a, b). Moreover, this equality also
shows that such u and v must be coprime, since gcd(a, b) already divides a and b. Hence, applying Bézout’s identity once

more to u and v, we have x and y such that ux+ vy = 1. Take the matrix U =

(
u −y
v x

)
. The first column of this matrix

is constructed such that the top-left coefficient of M · U is equal to au+ bv = gcd(a, b). The second column of the matrix
is added so that the matrix U has determinant 1 (so that it is invertible over Z). This is ensured by the second Bézout’s
identity, which shows that det(U) = ux+ yv = 1, i.e., U is unimodular.

Page 3



4. Using the previous question, show that for any matrix M =

(
a b
c d

)
there is a unimodular matrix U such that

M · U =

(
gcd(a, b) 0
∗ ∗

)
.

A: Once we have applied the unimodular matrix U from the previous question, we obtain a basis of the form(
gcd(a, b) z
∗ ∗

)
. Moreover, we know that z must be a multiple of gcd(a, b), since it is an integer linear combination

of a and b (all top coefficient of vectors in L(M) must be integer linear combinations of a and b). Hence, from now on, we
can use regular Gaussian elimination and perform C2 ← C2− z/ gcd(a, b)C1 to annihilate the top-right coefficient (where
C1 and C2 are the columns of the matrix M · U ). This operation is obtained by multiplying on the right by the matrix

U ′ =

(
1 −z/ gcd(a, b)
0 1

)
which is integer and unimodular as desired.

5. Compute a matrix U as in the previous question for M =

(
9 2
3 1

)
.

A: U =

(
−1 −2
5 9

)
which gives M · U =

(
1 0
2 3

)

6. Let M1 =

2 1 0
8 1 4
0 1 7

. Generalize the algorithm from the previous questions to compute a matrix M2 such that

M2 = M1 · U for some unimodular matrix U and M2 is of the form M2 =

∗ 0 0
∗ ∗ 0
∗ ∗ ∗

.

A: U =

0 −1 −2
1 2 4
0 2 3

 and M2 = M1 · U =

1 0 0
1 2 0
1 16 25



7. Let L be a lattice of dimension n. Show that there is a unique basis B of L such that bi,j = 0 when j > i,
bi,i > 0 and 0 ≤ bi,j < bi,i for j < i. This basis is called the Hermite normal form (HNF) basis of L. (??)

A: First, observe that the algorithm that we described in the previous question provides an algorithmic proof that such a
basis exists (the condition that bi,j ∈ [0, bi,i) for j < i is ensured by reducing the non-diagonal coefficients modulo the
diagonal coefficients, from top to bottom).

Let us now prove that such a basis is unique. Assume for a contradiction that there exists two such bases B and C, with
columns bj and cj . Let j0 be maximal such that bj0 6= cj0 . Since B and C span the same lattice, then bj0 is an integer linear
combination of the vectors (cj)1≤j≤n. Moreover, because of the special shape of C and since the top coefficients of bj0 are
0, then is must be that bj0 is a combination of the columns cj for j ≥ j0. This implies that the diagonal coefficient bj0,j0
is an integer multiple of cj0,j0 . But a similar argument shows that cj0,j0 is an integer multiple of bj0,j0 , hence we conclude
that |bj0,j0 | = |cj0,j0 |. Since both are positive by assumption, we conclude that bj0,j0 = cj0,j0 .

From this, we know that bj0 = cj0 +
∑

j>j0
aj ·cj for some integers aj’s. However, we know that cj = bj for any j > j0 by

choice of j0, which means that the diagonal coefficients bj,j and cj,j are the same for j > j0. We also know that the bottom
coefficients of both bj0 and cj0 are reduced modulo those diagonal coefficients cj,j = bj,j . Hence, a recursive argument
shows that aj must be equal to 0 for all j > j0, and we conclude that bj0 = cj0 , which is a contradiction.

Page 4



4 LWE and SIS lattices (??)

Let q,m, n > 0 be integers and A ∈ Zm×n
q . Recall that the SIS lattice associated to A is defined by Λ⊥(A) :=

{x ∈ Zm |xT · A = 0 mod q}. Recall similarly that the LWE lattice associated to A is Λ(A) := {x ∈ Zm | ∃s ∈
Zn s.t. As = x mod q}.

1. Show that the sets Λ⊥(A) and Λ(A) are indeed lattices in Rm.

A: We use the definition of a lattice given in Section 1. First, one can check from the definitions that Λ⊥(A) and Λ(A) are
stable by addition and subtraction. Second, since Λ⊥(A) and Λ(A) are both included in Zm, they are discrete.

It remains to show that they contain m linearly independent vectors. Both lattices are what we call q-ary lattices, meaning
that they contain qZm, hence they indeed contain m linearly independent vectors: the vectors (0, . . . , 0, q, 0, . . . , 0) with q
ranging from position 1 to m. This shows that the two sets are lattices in Rm.

2. Show that Λ(A) is generated by the columns of A and the m vectors q · ei (with 1 ≤ i ≤ m), where ei is the
vector with a 1 at the i-th position and 0’s everywhere else.

A: First, one can check that Λ(A) indeed contains the column vectors ofA (take s = (0, . . . , 0, 1, 0, . . . , 0) in the definition
of Λ(A)) and the m vectors q · ei (take s = 0).

Let us then show the reverse inclusion. Let x ∈ Λ(A). By definition, there must exist a vector s ∈ Zn and z ∈ Zm such
that x = A · s+ q · z. This shows that x is an integer linear combination of the columns of A and the q · ei vectors. Hence,
those vectors indeed generate the lattice Λ(A).

3. Assume that q is prime. Using the previous question, exhibit a set of generating vectors for the lattice Λ⊥(A).
(Hint: you might want to show that Λ⊥(A) = Λ(B) for some well chosen matrix B).

A: Let B ∈ Zm×k be a basis (in columns) of the left kernel of A modulo q, i.e., BT · A = 0 mod q (here, we use the
fact that q is prime so that Zq is a field and the kernel of A is a vector space). We know that k ≥ m − n, but it could be
bigger if the rank of A modulo q is < n. We have that x ∈ Λ⊥(A) if and only if xT · A = 0 mod q, which is equivalent
to x belongs to the span of the columns of B modulo q, i.e., x ∈ Λ(B). Using the previous question, we conclude that the
column vectors of B together with the q · ei vectors form a generating set of Λ⊥(A).

4. Assume again that q is prime. Assume also that m ≥ n and that the rank of A modulo q is n (i.e., the n column
vectors of A are linearly independent modulo q). Show that up to permuting the rows of A (i.e., permuting the

coefficients of the vectors in Λ(A)), there exists a basis of Λ(A) of the form
(
In 0n×(m−n)
A′ q · Im−n

)
, for some integer

matrix A′ ∈ Z(m−n)×n. (??)

Similarly, show that up to permuting the rows ofA, there exists a basis of Λ⊥(A) of the form
(
Im−n 0(m−n)×n
B′ q · In

)
,

for some integer matrix B′ ∈ Zn×(m−n).

A: First, observe that by definition of Λ(A), the lattice only depends on the span over Zq of the columns of A, and not the
actual choice of the basis A. Also, since the rank of the columns of A is n, then up to permuting the rows of A, we can

assume that A =

(
A1

A2

)
with A1 ∈ Zn×n invertible modulo q.

Hence, we have Λ(A) = Λ(A ·A−11 ), where A ·A−11 =

(
In
A′

)
, with A′ = A2 ·A−11 .

By a previous question, we know that the columns of Ã :=

(
In
A′

)
together with the q · ei vectors generate the lattice Λ(A).

Observe now that because of the special shape of Ã, the first n vectors q · ei are already in the span of the columns of Ã
and the other q · ej vectors for j > n (for i ≤ n, the vector q · ei can be obtained by multiplying the i-th column of Ã by q
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and annihilating the bottom m− n coordinates using the q · ej with j > n since those coordinates will be integer multiples
of q).

Hence, the n column vectors of A together with the (m− n) vectors qej for j > n generate the lattice Λ(A). Since those
are exactly m vectors, they form a basis of the lattice, with the desired shape.

Regarding Λ⊥(A), we have already seen in a previous question that this lattice is equal to Λ(B) where B forms a basis of
the kernel of A. Since A has rank n modulo q, then we know that B has dimension m× (m−n) and rank m−n modulo q.
Applying what we have done above to the matrix B solves the second part of the question.

5. Assuming that q is prime and that A has rank n modulo q, show that the SIS lattice Λ⊥(A) contains a non-zero
vector of norm≤

√
m ·qn/m and that the LWE lattice Λ(A) contains a non-zero vector of norm≤

√
m ·q1−n/m.

A: From the previous question, we know that det(Λ(A)) = qm−n and det(Λ⊥(A)) ≤ qn (permuting the coefficients of
the vectors does not change the volume of the lattices). The shortness of the vectors then follows from Minkowski’s first
theorem.

5 Solving the closest vector problem (?)

Babai’s round-off algorithm solves the approximate closest vector problem as follows. Given as input a basis
(bi)1≤i≤n of the lattice L (of dimension n) and a target t, the algorithm writes t =

∑n
i=1 tibi with ti ∈ R and

output the vector s =
∑

idticbi.

1. Show that Babai’s round-off algorithm finds a point s ∈ L such that ‖t− s‖ ≤ 1/2 · n ·maxi ‖bi‖.

A: Since the dtic’s are integers, then s belongs indeed to the lattice L.

Let us now compute the distance to t. For x ∈ R, we write {x} = x−dxc the fractional part of x. It belongs to [−1/2, 1/2].

‖s− t‖ = ‖
∑
i

{ti} · bi‖

≤
∑
i

|{ti}| · ‖bi‖

≤ 1/2 · n ·max
i
‖bi‖.

6 Lagrange-Gauss algorithm (? ? ?)

Recall the Lagrange-Gauss algorithm: given as input a basis (b1, b2) of a lattice in R2, the algorithm finds x ∈ Z that
minimizes ‖b2 − xb1‖ and replaces b2 by b2 − xb1 (finding x efficiently is done by computing the QR factorization
of the basis B, this step is not important for this exercise). The algorithm then switches b1 and b2 and starts again.
The algorithm stops when no progress is made for two consecutive iterations (which means that we cannot reduce b1
by b2 nor b2 by b1 anymore).

1. Let b1 and b2 be two non-zero vectors in R2. Show that if ‖b1‖ ≤ ‖b1 + b2‖, then for any α ∈ (1,+∞) it holds
that ‖b1 + b2‖ ≤ ‖b1 + αb2‖. (??)

A: Let us consider the function

f : R→ R+

α 7→ ‖b1 + αb2‖

A drawing shows that this is a convex function which has a unique minimum at α0, is decreasing on (−∞, α0] and
increasing on [α0,+∞). Since ‖b1‖ ≤ ‖b1 + b2‖ (i.e., f(0) ≤ f(1)) by assumption, then it must be that α0 ≤ 1.
From this we conclude that f is increasing on [1,+∞) which implies that ‖b1 + b2‖ ≤ ‖b1 + αb2‖ for any α ≥ 1.
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2. Show that if the Lagrange-Gauss algorithm terminates, then either b1 or b2 is a shortest non-zero vector of L.
(Hint: you may want to consider a shortest non-zero vector s = x1b1 + x2b2 and write it as s = x1 · (b1 + αb2)
with α = x2/x1 if x1 6= 0.) (? ? ?)

A: Without loss of generality, assume that ‖b1‖ ≤ ‖b2‖. Let’s use the hint and take s = x1b1 + x2b2 be a shortest non-zero
vector in L (with x1 and x2 integers). Without loss of generality, we can assume that x1, x2 ≥ 0 (otherwise we can multiply
b1 and/or b2 by −1, which does not change their size nor the fact that the algorithm cannot reduce them anymore).

If x1 = 0, then we must have x2 ≥ 1 (since x2 6= 0 is a non-negative integer). Then we have ‖b1‖ ≤ ‖b2‖ ≤ ‖x2b2‖ = ‖s‖,
from which we conclude that b1 is a shortest non-zero vector of L.

Similarly, if x2 = 0, then ‖b1‖ ≤ ‖x1b1‖ = ‖s‖ and so b1 is a shortest non-zero vector.

Let us now assume that x1 and x2 are both non-zero. Assume that x1 ≥ x2, then s = x2 · (αb1 + b2), with α = x1/x2 ≥ 1.
Since the algorithm terminated, we know that b2 cannot be reduced anymore be adding to it multiples of b1, which implies
in particular that ‖b2‖ ≤ ‖b2 + b1‖. From the previous question, we conclude that ‖b2 + b1‖ ≤ ‖b2 + αb1‖ ≤ ‖s‖ (since
x2 ≥ 1). We finally conclude that ‖b1‖ ≤ ‖b2‖ ≤ ‖b2 + b1‖ ≤ ‖s‖ as desired.

If x1 ≤ x2, the situation is very similar. We have

‖b1‖ ≤ ‖b1 + b2‖
≤ |x1| · ‖b1 + b2‖
≤ |x1| · ‖b1 + (x2/x1) · b2‖
= ‖s‖.
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